Skip to main content

bamboo

Viscoelastic damping behavior of structural bamboo material and its microstructural origins

Submitted by Yang Lu on

In this study, the intrinsic viscoelastic mechanical behavior of a hierarchical bio-composite, structural bamboo material, was experimentally investigated and correlated with its microstructural constituents and molecular building blocks. The macroscopic viscoelastic responses of bulk bamboo at ambient temperature and dehydrated condition were evaluated through dynamic compression experiments with various loading frequencies, whereas the localized viscoelasticity of bamboo's microstructural phases, viz.

Asymmetric flexural behavior from bamboo’s functionally graded hierarchical structure: Underlying mechanisms

Submitted by Yang Lu on

As one of the most renewable resources on Earth, bamboo has recently attracted increasing interest for its promising applications in sustainable structural purposes. Its superior mechanical properties arising from the unique functionally-graded (FG) hierarchical structure also make bamboo an excellent candidate for bio-mimicking purposes in advanced material design. However, despite its well-documented, impressive mechanical characteristics, the intriguing asymmetry in flexural behavior of bamboo, alongside its underlying mechanisms, has not yet been fully understood.

Crack Propagation in Bamboo's Hierarchical Cellular Structure

Submitted by Yang Lu on

Bamboo, as a natural hierarchical cellular material, exhibits remarkable mechanical properties including excellent flexibility and fracture toughness. As far as bamboo as a functionally graded bio-composite is concerned, the interactions of different constituents (bamboo fibers; parenchyma cells; and vessels.) alongside their corresponding interfacial areas with a developed crack should be of high significance.