We study the geometric phases of nonlinear elastic $N$-rotors with continuous rotational symmetry. In the Hamiltonian framework, the geometric structure of the phase space is a principal fiber bundle, i.e., a base, or shape manifold~$\mathcal{B}$, and fibers $\mathcal{F}$ along the symmetry direction attached to it. The symplectic structure of the Hamiltonian dynamics determines the connection and curvature forms of the shape manifold. Using Cartan's structural equations with zero torsion we find an intrinsic (pseudo) Riemannian metric for the shape manifold.
Recent comments