User login

Navigation

You are here

Dislocation

Kejie Zhao's picture

Question: Is the local energy dictating dislocation emission constant for single crystal?

Hi everyone, in my size dependence study, I find the local energy dictating dislocation emission is almost constant for varied sized samples, in given directions of single crystal. I don't know this is an interesing finding, or just a common sense. Will you give me some suggestion, Thank you!

Kejie

Honghui Yu's picture

Integral Formulations for 2D Elasticity: 1. Anisotropic Materials

Might also be useful for simulating dislocation motion in a finite body.

Several sets of boundary integral equations for two dimensional elasticity are derived from Cauchy integral theorem.These equations reveal the relations between displacements and resultant forces, between displacements and tractions, and between the tangential derivatives of displacements and tractions on solid boundary.Special attention is given to the formulation that is based on tractions and the tangential derivatives of displacements on boundary, because its integral kernels have the weakest singularities.The formulation is further extended to include singular points, such as dislocations and line forces, in a finite body, so that the singular stress field can be directly obtained from solving the integral equations on the external boundary without involving the linear superposition technique often used in the literature. Body forces and thermal effect are subsequently included. The general framework of setting up a boundary value problem is discussed and continuity conditions at a non-singular corner are derived.  The general procedure in obtaining the elastic field around a circular hole is described, and the stress fields with first and second order singularities are obtained. Some other analytical solutions are also derived by using the formulation. 

Pages

Subscribe to RSS - Dislocation

Recent comments

More comments

Syndicate

Subscribe to Syndicate