Skip to main content

arash_yavari's blog

Nonlinear Elasticity in a Deforming Ambient Space

Submitted by arash_yavari on

In this paper we formulate a nonlinear elasticity theory in which the ambient space is evolving. For a continuum moving in an evolving ambient space, we model time dependency of the metric by a time-dependent embedding of the ambient space in a larger manifold with a fixed background metric. We derive both the tangential and the normal governing equations. We then reduce the standard energy balance written in the larger ambient space to that in the evolving ambient space.

Finite Eigenstrains in Nonlinear Elastic Wedges

Submitted by arash_yavari on

Eigenstrains are created as a result of anelastic effects such as defects, temperature changes, bulk growth, etc., and strongly affect the overall response of solids. In this paper, we study the residual stress and deformation fields of an incompressible, isotropic, infinite wedge due to a circumferentially-symmetric distribution of finite eigenstrains. In particular, we establish explicit exact solutions for the residual stresses and deformation of a neo-Hookean wedge containing a symmetric inclusion with finite radial and circumferential eigenstrains.

A Geometric Theory of Nonlinear Morphoelastic Shells

Submitted by arash_yavari on

We formulate a geometric theory of nonlinear morphoelastic shells that can model the time evolution of residual stresses induced by bulk growth. We consider a thin body and idealize it by a representative orientable surface. In this geometric theory, bulk growth is modeled using an evolving referential configuration for the shell (material manifold). We consider the evolution of both the first and second fundamental forms in the material manifold by considering them as dynamical variables in the variational problem.

The Twist-Fit Problem: Finite Torsional and Shear Eigenstrains in Nonlinear Elastic Solids

Submitted by arash_yavari on

Eigenstrains in nonlinear elastic solids are created through defects, growth, or other anelastic effects. These eigenstrains are known to be important as they can generate residual stresses and alter the overall response of the solid. Here, we study the residual stress fields generated by finite torsional or shear eigenstrains. This problem is addressed by considering a cylindrical bar made of an incompressible isotropic solid with an axisymmetric distribution of shear eigenstrains.

The Weak Compatibility Equations of Nonlinear Elasticity and the Insufficiency of the Hadamard Jump Condition for Non-Simply Connected Bodies

Submitted by arash_yavari on

We derive the compatibility equations of L2 displacement gradients on non-simply-connected bodies. These compatibility equations are useful for non-smooth strains such as those associated with deformations of multi-phase materials. As an application of these compatibility equations, we study some configurations of different phases around a hole and show that, in general, the classical Hadamard jump condition is not a sufficient compatibility condition.

On the origins of the idea of the multiplicative decomposition of the deformation gradient

Submitted by arash_yavari on

Usually the multiplicative decomposition of deformation gradient in finite plasticity is (incorrectly) attributed to Lee and Liu (1967). This short note discusses the origins of this idea, which go back to the late 1940s. We explain that the first explicit mention of this decomposition appeared a decade earlier in the work of Bilby, et al. (1957) and Kröner (1959). While writing this note I found out that Bruce Bilby passed away a couple of years ago at the age of 91.

On the Compatibility Equations of Nonlinear and Linear Elasticity in the Presence of Boundary Conditions

Submitted by arash_yavari on

We use Hodge-type orthogonal decompositions for studying the compatibility equations of the displacement gradient and the linear strain with prescribed boundary displacements. We show that the displacement gradient is compatible if and only if for any equilibrated virtual first-Piola Kirchhoff stress tensor field, the virtual work done by the displacement gradient is equal to the virtual work done by the prescribed boundary displacements. This condition is very similar to the classical compatibility equations for the linear strain.

A new paper on Hencky-logarithmic strain by Prof. Neff

Submitted by arash_yavari on

Dear Colleagues:

I thought the following recent paper by Prof. Neff may be of interest to some of you.

http://arxiv.org/abs/1505.02203

This paper discusses the natural appearance of the  Hencky-logarithmic strain tensor together with the Hencky strain energy, which can be motivated from some purely geometrical (kinematical) arguments based on the geodesic distance on the general linear group of all invertible tensors GL(n).