Line and Point Defects in Nonlinear Anisotropic Solids
In this paper, we present some analytical solutions for the stress fields of nonlinear anisotropic solids with distributed line and point defects.
In this paper, we present some analytical solutions for the stress fields of nonlinear anisotropic solids with distributed line and point defects.
We introduce a new family of mixed finite elements for incompressible nonlinear elasticity — compatible-strain mixed finite element methods (CSFEMs). Based on a Hu-Washizu-type functional, we write a four-field mixed formulation with the displacement, the displacement gradient, the first Piola-Kirchhoff stress, and a pressure-like field as the four independent unknowns. Using the Hilbert complexes of nonlinear elasticity, which describe the kinematics and the kinetics of motion, we identify the solution spaces of the independent unknown fields.
The College of Engineering at the Georgia Institute of Technology is seeking nominations and applications for the position of the Karen and John Huff Chair of the School of Civil and Environmental Engineering (CEE).
In this paper we study the stress and deformation fields generated by nonlinear inclusions with finite eigenstrains in anisotropic solids. In particular, we consider finite eigenstrains in transversely isotropic spherical balls and orthotropic cylindrical bars made of both compressible and incompressible solids. We show that the stress field in a spherical inclusion with uniform pure dilatational eigenstrain in a spherical ball made of an incompressible transversely isotropic solid such that the material preferred direction is radial at any point is uniform and hydrostatic.
In this paper we analyze the stress field of a solid torus made of an incompressible isotropic solid with a toroidal inclusion that is concentric with the solid torus and has a uniform distribution of pure dilatational finite eigenstrains. We use a perturbation analysis and calculate the residual stresses to the first order in the thinness ratio (the ratio of the radius of the generating circle and the overall radius of the solid torus). In particular, we show that the stress field inside the inclusion is not uniform.
The elastic Ericksen's problem consists of finding deformations in isotropic hyperelastic solids that can be maintained for arbitrary strain-energy density functions. In the compressible case, Ericksen showed that only homogeneous deformations are possible. Here, we solve the anelastic version of the same problem, that is we determine both the deformations and the eigenstrains such that a solution to the anelastic problem exists for arbitrary strain-energy density functions. Anelasticity is described by finite eigenstrains.
In this paper we are concerned with finding exact solutions for the stress fields of nonlinear solids with non-symmetric distributions of defects (or more generally finite eigenstrains) that are small perturbations of symmetric distributions of defects with known exact solutions. In the language of geometric mechanics this corresponds to finding a deformation that is a result of a perturbation of the metric of the Riemannian material manifold. We present a general framework that can be used for a systematic analysis of this class of anelasticity problems.
We introduce some Hilbert complexes involving second-order tensors on flat compact manifolds with boundary that describe the kinematics and the kinetics of motion in nonlinear elasticity. We then use the general framework of Hilbert complexes to write Hodge-type and Helmholtz-type orthogonal decompositions for second-order tensors.
Dear Friends:
As was also mentioned by another colleague (http://imechanica.org/node/20391), Prof. Gérard Maugin passed away on September 22, 2016.
The following is a message that my good friend Prof. Marcelo Epstein sent me and a few other colleagues. He has kindly given me permission to share it with you.
——
Dear friends,
In this paper, using the Hilbert complexes of nonlinear elasticity, the approximation theory for Hilbert complexes, and the finite element exterior calculus, we introduce a new class of mixed finite element methods for 2D nonlinear elasticity -- compatible-strain mixed finite element methods (CSFEM). We consider a Hu-Washizu-type mixed formulation and choose the displacement, the displacement gradient, and the first Piola-Kirchhoff stress tensor as independent unknowns. We use the underlying spaces of the Hilbert complexes as the solution and test spaces.