User login

Navigation

You are here

arash_yavari's blog

arash_yavari's picture

On geometric discretization of elasticity

This paper presents a geometric discretization of elasticity when
the ambient space is Euclidean. This theory is built on ideas from
algebraic topology, exterior calculus and the recent developments
of discrete exterior calculus. We first review some geometric
ideas in continuum mechanics and show how constitutive equations
of linearized elasticity, similar to those of electromagnetism,
can be written in terms of a material Hodge star operator. In the
discrete theory presented in this paper, instead of referring to

arash_yavari's picture

Covariance in Linearized Elasticity

In this paper we covariantly obtain the governing equations of linearized elasticity. Our motivation is to see if one can make a connection between (global) balance of energy in nonlinear elasticity and its counterpart in linear elasticity. We start by proving a Green-Naghdi-Rivilin theorem for linearized elasticity. We do this by first linearizing energy balance about a given reference motion and then by postulating its invariance under isometries of the Euclidean ambient space.

arash_yavari's picture

Discrete Fractal Fracture Mechanics

This paper extends the recently developed theories of fracture
mechanics with finite growth (mainly the work of Pugno and Ruoff, 2004
on quantized fracture mechanics) to fractal cracks. One interesting
result is the prediction of crack roughening for fractal cracks.

arash_yavari's picture

Anharmonic lattice statics analysis of 180^o and 90^o ferroelectric domain walls in PbTiO3

This paper presents an anharmonic lattice statics analysis of 180 and 90 domain walls in tetragonal ferroelectric perovskites. We present all the calculations and numerical examples for the technologically important ferroelectric material PbTiO3. We use shell potentials that are fitted to quantum mechanics calculations. Our formulation places no restrictions on the range of the interactions. This formulation of lattice statics is inhomogeneous and accounts for the variation of the force constants near defects.

arash_yavari's picture

On the geometric character of stress in continuum mechanics

This paper shows that the stress field in the classical theory of continuum mechanics
may be taken to be a covector-valued differential two-form. The balance laws and other funda-
mental laws of continuum mechanics may be neatly rewritten in terms of this geometric stress. A

arash_yavari's picture

On Spatial and Material Covariant Balance Laws in Elasticity

This paper presents some developments related to the idea of covariance in elasticity. The geometric point of view in continuum mechanics is briefly reviewed. Building on this, regarding the reference configuration and the ambient space as Riemannian manifolds with their own metrics, a Lagrangian field theory of elastic bodies with evolving reference configurations is developed. It is shown that even in this general setting, the Euler-Lagrange equations resulting from horizontal (referential) variations are equivalent to those resulting from vertical (spatial) variations. The classical Green-Naghdi-Rivilin theorem is revisited and a material version of it is discussed. It is shown that energy balance, in general, cannot be invariant under isometries of the reference configuration, which in this case is identified with a subset of R^3. Transformation properties of balance of energy under rigid translations and rotations of the reference configuration is obtained. The spatial covariant theory of elasticity is also revisited. The transformation of balance of energy under an arbitrary diffeomorphism of the reference configuration is obtained and it is shown that some nonstandard terms appear in the transformed balance of energy. Then conditions under which energy balance is materially covariant are obtained. It is seen that material covariance of energy balance is equivalent to conservation of mass, isotropy, material Doyle-Ericksen formula and an extra condition that we call ‘configurational inviscidity’. In the last part of the paper, the connection between Noether’s theorem and covariance is investigated. It is shown that the Doyle-Ericksen formula can be obtained as a consequence of spatial covariance of Lagrangian density. Similarly, it is shown that the material Doyle-Ericksen formula can be obtained from material covariance of Lagrangian density.

arash_yavari's picture

A Theory of Anharmonic Lattice Statics for Analysis of Defective Crystals

This paper develops a theory of anharmonic lattice statics for the analysis of defective complex lattices. This theory differs from the classical treatments of defects in lattice statics in that it does not rely on harmonic and homogeneous force constants. Instead, it starts with an interatomic potential, possibly with in¯nite range as appropriate for situations with electrostatics, and calculates the equilibrium states of defects. In particular, the present theory accounts for the differences in the force constants near defects and in the bulk. The present formulation reduces the analysis of defective crystals to the solution of a system of nonlinear difference equations with appropriate boundary conditions. A harmonic problem is obtained by linearizing the nonlinear equations, and a method for obtaining analytical solutions is described in situations where one can exploit symmetry. It is then extended to the anharmonic problem using modified Newton-Raphson iteration. The method is demonstrated for model problems motivated by domain walls in ferroelectric materials.

Pages

Subscribe to RSS - arash_yavari's blog

Recent comments

More comments

Syndicate

Subscribe to Syndicate