User login

Navigation

You are here

USACM-Webinar, TTA - UQ & Probabilistic Modeling. Title: Multifidelity, domain decomposition, and stacking for improving training for physics-informed networks. By Amanda Howard (PNNL)

susanta's picture

Webinar

January 16; 3pm EST

Speaker: Amanda Howard (Pacific Northwest National Laboratory)

Title: Multifidelity, domain decomposition, and stacking for improving training for physics-informed networks

Physics-informed neural networks and operator networks have shown promise for effectively solving equations modeling physical systems. However, these networks can be difficult or impossible to train accurately for some systems of equations. One way to improve training is through the use of a small amount of data, however, such data is expensive to produce. We will introduce our novel multifidelity framework for stacking physics-informed neural networks and operator networks that facilitates training by progressively reducing the errors in our predictions for when no data is available. In stacking networks, we successively build a chain of networks, where the output at one step can act as a low-fidelity input for training the next step, gradually increasing the expressivity of the learned model. We will finally discuss the extension to domain decomposition using the finite basis method, including applications to newly-developed Kolmogorov-Arnold Networks.

Join Zoom Meeting
https://us06web.zoom.us/j/92756548524?pwd=cTFoRXIvNVN4dVFoaHEzK0pQQjhldz09 (Meeting ID: 927 5654 8524/Passcode: 934745)

Please forward to anyone who may be interested.

Subscribe to Comments for "USACM-Webinar, TTA - UQ & Probabilistic Modeling. Title: Multifidelity, domain decomposition, and stacking for improving training for physics-informed networks. By Amanda Howard (PNNL)"

Recent comments

More comments

Syndicate

Subscribe to Syndicate