User login


You are here

Quantitative phase-field crystal modeling of solid-liquid interfaces for FCC metals

mohsenzaeem's picture

This work deals with the quantification and application of the modified two-mode phase-field crystal model (M2PFC; Asadi and Asle Zaeem, 2015) for face-centered cubic (FCC) metals at their melting point. The connection of M2PFC model to the classical density functional theory is explained in this article. M2PFC model in its dimensionless form contains three parameters (two independent and one dependent) which are determined using an iterative procedure based on the molecular dynamics and experimental data. The quantification process and computer simulations are performed for Ni and Al as two case studies. The quantitative M2PFC models are used in series of numerical simulations to determine the two-phase FCC-liquid coexisting and the bulk properties at the melting points of Ni and Al. The calculated and predicted properties are the expansion in melting, elastic constants, solid-liquid interface free energy, and surface anisotropy, which are also compared with their available experimental or computational counterparts in the literature.

Computational Materials Science 127 (2017) 236–243


Subscribe to Comments for "Quantitative phase-field crystal modeling of solid-liquid interfaces for FCC metals"

Recent comments

More comments


Subscribe to Syndicate