User login

Navigation

You are here

Mechanical Couplings of 3D Lattice Materials Discovered by Micropolar Elasticity and Geometric Symmetry

Joshua's picture

Like Poisson’s effect, mechanical coupling is a directional indirect response by a directional input loading. With the advance in manufacturing techniques of 3D complex geometry, architected materials with unit cells of finite volume rather than a point yield more degrees of freedom and foster exotic mechanical couplings such as axial–shear, axial–rotation, axial–bending, and axial–twisting. However, most structural materials have been built by the ad hoc design of mechanical couplings without theoretical support of elasticity, which does not provide general guidelines for mechanical couplings. Moreover, no comprehensive study of all the mechanical couplings of 3D lattices with symmetry operations has been undertaken. Therefore, we construct the decoupled micropolar elasticity tensor of 3D lattices to identify individual mechanical couplings correlated with the point groups. The decoupled micropolar elasticity tensors, classified with 32 point groups, provide 15 mechanical couplings for 3D lattices. Our findings help provide solid theoretical guidelines for the mechanical couplings of 3D structural materials with potential applications in various areas, including active metamaterials, sensors, actuators, elastic waveguides, and acoustics.

 

https://doi.org/10.1115/1.4056349

Subscribe to Comments for "Mechanical Couplings of 3D Lattice Materials Discovered by Micropolar Elasticity and Geometric Symmetry"

Recent comments

More comments

Syndicate

Subscribe to Syndicate