Skip to main content

Bloch-Floquet conditions

Phononic canonical quasicrystalline waveguides

Submitted by Massimiliano Gei on

I am glad to present a recent set of papers highlighting the noteworthy properties of 1D periodic waveguides generated by a quasicrystalline sequence. The concept of canonical configuration explains how to obtain a periodic frequency spectrum and why this outcome is connected to trace mapping:  

-->M. Gei, Z. Chen, F. Bosi, L. Morini (2020) Appl. Phys. Lett. 116, 241903 - https://doi.org/10.1063/5.0013528

Gyro-elastic beams for the vibration reduction of long flexural systems

Submitted by Giorgio Carta on

The paper presents a model of a chiral multi-structure incorporating gyro-elastic beams. Floquet–Bloch waves in periodic chiral systems are investigated in detail, with the emphasis on localization and the formation of standing waves. It is found that gyricity leads to low-frequency standing modes and generation of stop-bands. A design of an earthquake protection system is offered here, as an interesting application of vibration isolation. Theoretical results are accompanied by numerical simulations in the time-harmonic regime.

Bloch-Floquet waves in flexural systems with continuous and discrete elements

Submitted by Giorgio Carta on

In this paper we describe the dynamic behavior of elongated multi-structured media excited by flexural harmonic waves. We examine periodic structures consisting of continuous beams and discrete resonators disposed in various arrangements. The transfer matrix approach and Bloch-Floquet conditions are implemented for the determination of diff erent propagation and non-propagation regimes.