Skip to main content

Universal deformations

Finite Extension of Accreting Nonlinear Elastic Solid Circular Cylinders

Submitted by arash_yavari on

In this paper we formulate and solve the initial-boundary value problem of accreting circular cylindrical bars under finite extension. We assume that the bar grows by printing stress-free cylindrical layers on its boundary cylinder while it is undergoing a time-dependent finite extension. Accretion induces eigenstrains, and consequently residual stresses. We formulate the anelasticity problem by first constructing the natural Riemannian metric of the growing bar. This metric explicitly depends on the history of deformation during the accretion process.

The Universal Program of Nonlinear Hyperelasticity

Submitted by arash_yavari on

For a given class of materials, universal deformations are those that can be maintained in the absence of body forces by applying only boundary tractions.  Universal deformations play a crucial role in nonlinear elasticity.

Universal Deformations in Inhomogeneous Isotropic Nonlinear Elastic Solids

Submitted by arash_yavari on

Universal (controllable) deformations of an elastic solid are those deformations that can be maintained for all possible strain-energy density functions and suitable boundary tractions. Universal deformations have played a central role in nonlinear elasticity and anelasticity. However, their classification has been mostly established for homogeneous isotropic solids following the seminal works of Ericksen. In this paper, we extend Ericksen's analysis of universal deformations to inhomogeneous compressible and incompressible isotropic solids.

Universal Deformations in Anisotropic Nonlinear Elastic Solids

Submitted by arash_yavari on

Universal deformations of an elastic solid are deformations that can be achieved for all possible strain-energy density functions and suitable boundary conditions. They play a central role in nonlinear elasticity and their classification has been mostly accomplished for isotropic solids following Ericksen's seminal work. Here, we address the same problem for transversely isotropic, orthotropic, and monoclinic solids.