Skip to main content

energy

Structural simulation of a Horizontal Pressure Vessel for predicting stress under extreme weather conditions

Submitted by SIMULIA on

Offshore containers are exposed to the movement caused by wind, ocean currents, and unpredictable weather conditions so a good structural resistance is required for them. A dynamic analysis has been developed using Abaqus/Explicit to study the structural response of a horizontal pressure vessel mounted in Floating Production Storage and Offloading (FPSO) topsides in the Gulf of Mexico (GOM) coast. The model includes fluid behavior of crude oil inside the container for which the linear Us-Up Hugoniot equation of state is used. The viscosity of the oil was varied according to temperature.

Structural and motion system dynamic analysis of a two-axes solar tracker under wind action

Submitted by SIMULIA on

Solar trackers are being increasingly used within the industry in order to improve the amount of power produced by photovoltaic systems. The design of these devices must pay special attention to wind action as the most relevant load seen by the generally flexible structure supporting the panels. However, standard building codes may not be particularly suitable for  this sort of very flexible, extremely wind-exposed and not very critical-from-a-safety-point-of-view structures.

Sloshing of Cylindrical Tank due to Seismic Acceleration

Submitted by SIMULIA on

Cylindrical tanks are subjected to the seismic loads in certain countries, for example in Japan. The sloshing of these tanks is very important to consider the integrity of the containers. This phenomenon, however, is an interaction of structure and the fluid, namely oil, and is difficult to be analyzed using computer simulation codes. Owing to the FSI capability of Abaqus and Fluent via MpCCI, the phenomenon has been within the range of simulation. Authors tried to analyze the sloshing using the real seismic acceleration at Hachinohe earthquake in Japan and report the result.

Shape Memory Material Manufacturing Design Optimization and Stress Analysis

Submitted by SIMULIA on

A recent breakthrough in the development of shape memory materials has demonstrated promising applications for completion products in the oil and gas industry. In one of the targeted applications, shape modification is a major step toward commercialization of this technology. Efficiently and effectively reshaping the material is a key element for final production. The goal of our technical team is to design and optimize the reshaping equipment so as to enable production quantities of tools while maintaining material properties.

Seismic Response of Floating Roof Storage Tanks Contact Pressure Analysis

Submitted by SIMULIA on

Seismic response of liquid storage tank floating roofs involve phenomena that require dynamic nonlinear geometric and material behavior as well as surface to surface contact. Good engineering practice requires a practical analytical approach that captures the essential ingredients of structural behavior under earthquake excitation by making reasonable, conservative, and manageable approximations to the actual conditions. This paper discusses an approach used in Abaqus to calculate the stresses and deformations of a liquid storage tank floating roof under seismic loading.

POST-CRACKING BEHAVIOUR OF A WIND TURBINE CONCRETE TOWER

Submitted by SIMULIA on

The paper deals with the dynamic performance of a simply reinforced concrete tower built using prefabricated elements. The main uncertainty of this strategy stems from the possible cracking of the concrete and its implications on the stiffness, natural frequency and dynamic amplification of the tower.

Onset of levitation in thrust bearing: FSI study using Abaqus-FlowVision coupling

Submitted by SIMULIA on

Sliding bearing is widely used in machine building, power generation, automobile industry, mining industry. Characteristics of the bearing are defined by using several methods as theoretical calculations, engineering semi-empirical calculations or using numerical simulations (Petrushina, 2006). A calculation of sliding bearing parameters using direct coupling (Aksenov et al., 2004, Aksenov et al., 2006) between Abaqus finite-element code and FlowVision finite-volume code is described in this paper.

Numerical Analysis of Punching Shear Failure of Reinforced Concrete Slabs

Submitted by SIMULIA on

Nearly no load bearing behaviour of reinforced concrete members allows such varied interpretations and complex discussions as the shear behaviour. Especially the three-dimensional problem of the punching shear failure of reinforced concrete members is internationally discussed. Nevertheless up to now, there is no unified design approach or even an overall accepted design model. Especially for large structural members, as they are commonly used in industrial structures and high-rise structures, the experimental background is missing.

On Nonlinear Buckling and Collapse Analysis using Riks Method

Submitted by SIMULIA on

Nonlinear analysis using Riks method is suitable for predicting buckling, post-buckling, or collapse of certain types of structures, materials, or loading conditions, where linear or eigenvalue method will become inadequate or incapable, especially when nonlinear material, such as plasticity, is present, or post-buckling behavior is of interest.

How Can We Make Best…Better: Using Abaqus and Isight to Optimize Tools for Downhole Expandable Tubulars

Submitted by SIMULIA on

The use of expandable tubulars has emerged as a popular technology for drilling and completing wells. While expandable tubulars vary in type depending upon the application and specific well requirements, the most common approach is to actually form the metals downhole, which presents unprecedented challenges for tool designers. The costs and timelines to achieve a “workable” product can be tremendous.