Skip to main content

energy

Finite Element Modelling Of Blade Thermoelastic Stress Analysis Results

Submitted by SIMULIA on

Thermoelastic stress analysis (TSA) is a non-destructive method that is used to assess structural stress. It is based on the ability to measure stress induced thermal emissions during cyclic loading with an infrared camera. It has potential applications for the monitoring of wind turbine blades certification tests. In this work, conducted as part of the UK SuperGen Wind consortium, finite element (FE) analyses are conducted to evaluate the potential correlation with TSA outputs.

Finite element modelling techniques and testing methods of submerged pipes

Submitted by SIMULIA on

The purpose of the present work is to discuss some FEM procedures and experimental methods that are currently used in the pipeline industry and open the way to the possibility of developing new experimental apparatuses which can provide much more economical alternatives to traditional design codes and tests.

FEA Modelling of Expandable Sand Screens

Submitted by SIMULIA on

Expandable sand screens are a relatively novel sand control system, which are used to control the ingress of solids in oil and gas reservoirs with weak and unconsolidated formations. They combine the ease of installation of conventional screens with the borehole support of a gravel pack.

There are two different variations of expandable screens; a system based on a slotted basepipe which are easy to expand but relatively low in strength and a system based on a drilled basepipe which are very strong but difficult to expand.

FEA Modelling of Expandable Sand Screens Interactions with Rock Formations

Submitted by SIMULIA on

Expandable sand screens are a sand control system, which is used to control the ingress of solids in oil and gas reservoirs with weak and unconsolidated formations. There are two different variations of expandable screens; a system based on a slotted basepipe which are easy to expand compliant to the formation but is relatively low in strength and a system based on a drilled basepipe which is very strong but is more difficult to expand compliantly. FEA has been used to model the slotted basepipe type to better understand the interaction of the expanded screen with the rock formations.

Evaluation of Stress and Strain Induced by the Rock Compaction on a Hydrocarbon Well Completion Using Contact Interfaces with Ab

Submitted by SIMULIA on

The development plan of a hydrocarbon field includes the design of all the production/injection wells forecasted for the scenario considered. The pressure depletion occurring during the hydrocarbon reservoir exploitation induces rock compaction in the near wellbore area, which may result in mechanical actions transmitted to the well completions, that alter the stress regime in some of their sections. This phenomenon can possibly bring to the failure of the casing and of the cement, eventually leading to the well shutdown and to significant economic loss.

An Evaluation of the Pro/ENGINEER Associative Interface for Abaqus/CAE

Submitted by SIMULIA on

As design cycle times are shortened, engineers continue to find ways to be more productive. Generally, one tries to leverage software tools to get solutions faster. This productivity improvement is possible through continued software advancements, such as the Pro/ENGINEER to Abaqus/CAE Associative Import, via an Elysium Neutral (Assembly) File. Engineers can iterate from CAD to FEA while retaining applied loads and boundary conditions. This paper will discuss use of the associative import features with design changes (such as thickness change, split surfaces, or holes).

Dynamic Response in a Pipe String during Drop-Catch in a Wellbore

Submitted by SIMULIA on

In field operations, during rapid deceleration of pipe (simulated by drop-catch process) or slack-off stop process, significant dynamic effects can occur. The dynamic event can amplify the load on the pipe string, and the amplified load can break a weak thread. It is necessary to understand the mechanics of this dynamic event, and thus, provide guidelines or directions for safe design and operation of the pipe string. An analysis procedure using FEA, which involves fluid-pipe interaction, has been established for this study.

Cyclic Loading of a Rock Mass for Underground Gas Storage Applications

Submitted by SIMULIA on

The use of Underground Gas Storage (UGS) is expected to increase considerably in the near future due to various factors. Many of the UGS wells require sand control. Expandable Sand Screens (ESS) have many advantages as a completion option in UGS wells. But there has always been a concern on the effects on ESS due to cyclic loading. The paper deals with the changes in the borehole that would be caused during annual injection and production cycles from the storage reservoir.

Boundary Condition Influences on Shank Stress in 3D Solid Bolt Simulation

Submitted by SIMULIA on

When simulating bolts, the amount of detail to include is often raised. The analyst is left with using judgment in deciding to include or not include details, such as threads. For system models, where the primary bolt function is to transfer load from the cover to the base, thread details are sometimes perceived as not needed. It is believed that a reasonable result can be achieved without this detail. Should the bolt head contact interface be bonded or full, and how does this affect the shank stress, is another concern. This again is a judgment left to the analyst.