User login

Navigation

You are here

Antonio Papangelo's blog

Antonio Papangelo's picture

Enhancement of adhesion strength through microvibrations: Modeling and experiments

AbstractHigh-frequency micrometrical vibrations have been shown to greatly influence the adhesive performance of soft interfaces, however a detailed comparison between theoretical predictions and experimental results is still missing. Here, the problem of a rigid spherical indenter, hung on a soft spring, that is unloaded from an adhesive viscoelastic vibrating substrate is considered. The experimental tests were performed by unloading a borosilicate glass lens from a soft PDMS substrate excited by high-frequency micrometrical vibrations.

Antonio Papangelo's picture

Mechanochromic Suction Cups for Local Stress Detection in Soft Robotics

Advancements in smart soft materials are enhancing the capabilities of robotic manipulators in object interactions and complex tasks. Mechanochromic materials, acting as lightweight sensors, offer easily interpretable visual feedback for localized stress detection, structural health monitoring, and energy-efficient robotic skins.

Antonio Papangelo's picture

Bulk and fracture process zone contribution to the rate-dependent adhesion amplification in viscoelastic broad-band materials

The contact between a rigid Hertzian indenter and an adhesive broad-band viscoelastic substrate is considered. The material behavior is described by a modified power law model, which is characterized by only four parameters, the glassy and rubbery elastic moduli, a characteristic exponent n and a timescale tau0.

Antonio Papangelo's picture

Friction in Rolling a Cylinder on or Under a Viscoelastic Substrate with Adhesion

In classical experiments, it has been found that a rigid cylinder can roll both on and under an inclined rubber plane with a friction force that depends on a power law of velocity, independent of the sign of the normal force. Further, contact area increases significantly with velocity with a related power law.

Antonio Papangelo's picture

PhD position in bio-adhesion

Dear friends and colleagues, there is a new open position in soft contact mechanics in my group! We are looking for a motivated mechanical engineer (or alike) to contribute to cutting edge research on adhesion with biological tissue. We aim at developing soft micro-structured bio-compatible adhesive patch and scaffolds to be used for tissue re-attachment after injuries.

Antonio Papangelo's picture

Viscoelastic increase of detachment stress of a rigid punch from adhesive soft viscoelastic layers

The problem of the detachment of a sufficiently large flat indenter from a plane adhesive viscoelastic strip of thickness “b” is studied. For any given retraction speed, three different detachment regimes are found: (i) for very small “b” the detachment stress is constant and equal to the theoretical strength of the interface, (ii) for intermediate values of “b” the detachment stress decays approximately as b−1/2, (iii) for thick layers a constant detachment stress is obtained corresponding to case the punch is detaching from a halfplane.

Antonio Papangelo's picture

PhD position in adhesive soft contact mechanics - ERC funded group

Location: Polytechnic University of Bari, Department of Mechanics Mathematics and Management (DMMM), Via Orabona 4 - 70125 Bari – Italy

Job Type: Full Time

Deadline: 17 July 2023

Antonio Papangelo's picture

PhD position in bioengineering - ERC funded research Group

Location: Polytechnic University of Bari, Department of Mechanics Mathematics and Management (DMMM), Via Orabona 4 - 70125 Bari – Italy

Job Type: Full Time

Deadline: 17 July 2023

Antonio Papangelo's picture

PhD positions opening in contact mechanics at PoliBa

Location: Polytechnic University of Bari, Department of Mechanics Mathematics and Management (DMMM), Via Orabona 4 - 70125 Bari – Italy

Job Type: Full Time

Antonio Papangelo's picture

Research Topic on Fingerpad Contact Mechanics

Our research Topic on Fingerpad Contact Mechanics is still open! Please follow the link below for abstract submission!

 

Antonio Papangelo's picture

Fingerpad Contact Mechanics and Friction under Electroadhesion

We are hosting a new Research Topic "Fingerpad Contact Mechanics and Friction under Electroadhesion" in Frontiers in Mechanical Engineering, Tribology section. It welcomes contributions in adhesion mechanisms, electroadhesion, friction and vibrations, viscoelastic hysteresis, adhesive instabilities, and rough contact.

You can find more info at the link below!

Antonio Papangelo's picture

Fingerpad Contact Mechanics and Friction under Electroadhesion

A new research topic opened in Forntiers in Mechanical Engineering.

Antonio Papangelo's picture

Viscoelastic dissipation in repeated normal indentation of an Hertzian profile

Simple exact solutions are known for the indentation problem of a viscoelastic halfspace by a rigid sphere only as long as the contact area is growing. We consider instead a more general cyclic repeated indentation with a pulsating load with a period of zero load. We show that a combination of exact with empirical relaxation solutions coming from simple uniaxial cases is sufficiently accurate to estimate the energy dissipated per cycle, which we report for the standard ”3-elements” solid and periodic half-sine loading for various parameters.

Antonio Papangelo's picture

Viscoelastic normal indentation of nominally flat randomly rough contacts

Viscoelastic materials are receiving increasing attention in soft robots and pressure sensitive adhesives design, but also in passive damping techniques in automotive and aerospace industry. Here, by using the correspondence principle originally developed by Lee and Radok and further extended by Ting and Greenwood, we transform the elastic solutions of Persson for contact of nominally flat but randomly rough surfaces to viscoelastic indentation. As an example, the cases of step loading and of the response to a single cycle of harmonic loading are studied.

Antonio Papangelo's picture

On the Interaction of Viscoelasticity and Waviness in Enhancing the Pull-Off Force in Sphere/Flat Contacts

Motivated by roughness-induced adhesion enhancement (toughening and strengthening) in low modulus materials, we study the detachment of a sphere from a substrate in the presence of both viscoelastic dissipation at the contact edge, and roughness in the form of a single axisymmetric waviness. We show that the roughness-induced enhancement found by Guduru and coworkers for the elastic case (i.e. at very small detachment speeds) tends to disappear with increasing speeds, where the viscoelastic effect dominates and the problem approaches that of a smooth sphere.

Antonio Papangelo's picture

Adhesion enhancement in a dimpled surface with axisymmetric waviness and rate-dependent work of adhesion

Surfaces showing macroscopic adhesion are rare in industry, but are abundant in Nature. Adhesion enhancement has been discussed mostly with geometrical systems (e.g. patterned surfaces), more rarely with viscoelasticity, and has the goal of increasing hysteresis and the detachment force at separation. Soft materials are common, and these have viscoelastic properties that result in rate-dependent increase of toughness.

Antonio Papangelo's picture

How to better grasp your spoon?

How can shear loading rate affect the soft adhesive contact area? A new blog post in tribonet.org discusses the problem following the paper "Papangelo, Antonio. (2021). On the Effect of Shear Loading Rate on Contact Area Shrinking in Adhesive Soft Contacts. Tribology Letters. 69." just published in Tribology Letters.

Antonio Papangelo's picture

Critical thresholds for mode-coupling instability in viscoelastic sliding contacts

Mode-coupling instabilities are known to trigger self-excited vibrations in sliding contacts. Here, the conditions for mode-coupling (or "flutter") instability in the contact between a spherical oscillator and a moving viscoelastic substrate are studied. The work extends the classical 2-Degrees-Of-Freedom conveyor belt model and accounts for viscoelastic dissipation in the substrate, adhesive friction at the interface and non-linear normal contact stiffness as derived from numerical simulations based on a boundary element method capable of accounting for linear viscoelastic effects.

Antonio Papangelo's picture

On the Effect of Shear Loading Rate on Contact Area Shrinking in Adhesive Soft Contacts

Adhesion and, its interplay with friction, is central in several engineering applications involving soft contacts. Recently, there has been an incredible push towards a better understanding on how the apparent contact area evolves when a shear load is applied to an adhesive soft contact, both experimentally and theoretically. Although soft materials are well-known to exhibit rate-dependent properties, there is still a lack of understanding in how the loading rate could affect the contact area shrinking.

Antonio Papangelo's picture

On the Effect of a Rate-Dependent Work of Adhesion in the Detachment of a Dimpled Surface

AbstractPatterned surfaces have proven to be a valuable design to enhance adhesion, increasing hysteresis and the detachment stress at pull-off. To obtain high adhesive performance, soft materials are commonly, used, which easily conform to the countersurface, such as soft polymers and elastomers. Such materials are viscoelastic; i.e., they show rate-dependent properties. Here, the detachment of two half spaces is studied, one being flat and the other having a dimple in the limit of short range adhesion and a power law rate-dependent work of adhesion, as observed by several authors.

Pages

Subscribe to RSS - Antonio Papangelo's blog

Recent comments

More comments

Syndicate

Subscribe to Syndicate