User login

Navigation

You are here

Ashkan Vaziri's blog

Ashkan Vaziri's picture

Two Postdoc positions at Northeastern: Cellular structures, Soft Matter, and Biomimetic materials and structures

Two postdoctoral fellow positions at Northeastern University are available immediately, focused on the analysis of the nonlinear behavior of structures and soft matter using computational mechanics and the development and analysis of active cellular structures, and biomimetic materials. The research will be carried out at the High Performance Materials and Structures Laboratory (http://www.hpmsl.neu.edu/).

Ashkan Vaziri's picture

Postdoc position at Northeastern: Cellular structures, Soft Matter, and Biomimetic materials and structures

Two postdoctoral fellow positions at Northeastern University is available immediately, focused on the analysis of the nonlinear behavior of structures and soft matter using computational mechanics and the development and analysis of active cellular structures, and biomimetic materials. The research will be carried out at the High Performance Materials and Structures Laboratory (http://www.hpmsl.neu.edu/).

Ashkan Vaziri's picture

Two Postdoc positions at Northeastern: Solid and Computational Mechanics and Biomimetic materials and structures

Two postdoctoral fellow positions at Northeastern University are available immediately. First position is focused on the analysis of the nonlinear behavior of soft matter using computational mechanics and the development and analysis of biomimetic materials and structural systems. Second position is focused on computational and solid mechanics. The research will be carried out at the High Performance Materials and Structures Laboratory (http://www.hpmsl.neu.edu/).

Ashkan Vaziri's picture

Cell and Biomolecular Mechanics in silico, Nature Materials, Volume 7, 2008.

Recent developments in computational cell and biomolecular mechanics have provided valuable insights into the mechanical properties of cells, subcellular components and biomolecules, while simultaneously complementing new experimental techniques used for deciphering the structure–function paradigm in living cells. These computational approaches have direct implications in understanding the state of human health and the progress of disease and can therefore aid immensely in the diagnosis and treatment of diseases.

Ashkan Vaziri's picture

Flexible Probes for Characterizing Surface Topology: From Biology to Technology

In nature, several species use flexible probes to actively explore their environment, and acquire important sensory information, such as surface topology and texture, water/air flow velocity, etc. For example, rats and other rodents have an array of facial vibrissae (or whiskers) with which they gather tactile information about the external world.  The complex mechanisms, by which mechanical deformations of the probe lead to neuronal activity in the animal’s nervous system are still far from being understood. This is due to the intricacy of the deformation mechanics of the flexible sensors, the processes responsible for transforming the deformation to electrical activity, and the subsequent representation of the sensory information by the nervous system. Understanding how these mechanosensory signals are transduced and extracted by the nervous system promises great insight into biological function, and has novel technological applications. To understand the mechanical aspect of sensory transduction, here we monitored the deformation of a rat’s vibrissa as it strikes rigid objects with different topologies (surface features) during locomotion, using high-speed videography. Motivated by our observations, we developed detailed numerical models to study the mechanics of such flexible probes. Our findings elucidate how active sensation with vibrissae might provide sensory information and in addition have direct implications in several technological areas. To put this in perspective, we propose strategies in which flexible probes can be used to characterize surface topology at high speeds, which is a desirable feature in several technological applications such as memory storage and retrieval. (The full article is attached)

Ashkan Vaziri's picture

Multi-Axial Failure Models for Fiber-Reinforced Composites

The increasing use of fiber-reinforced composites accentuates the need for developing multi-axial fatigue failure models for these materials. In this article (attached), we proposed several multiaxial fatigue failure models for fiber-reinforced composites considering the contribution of mean and cyclic normal stress/strain and shear stress/strain at the plane of failure and examined their capability for predicting the fatigue life of the E-glass/epoxy composite materials.

Ashkan Vaziri's picture

"Persistence of a pinch in a pipe" by L. Mahadevan, Ashkan Vaziri and Moumita Das

The response of low-dimensional solid objects combines geometry and physics in unusual ways, exemplified in structures of great utility such as a thin-walled tube that is ubiquitous in nature and technology.

Ashkan Vaziri's picture

"Wrinkled hard skins on polymers created by Focused Ion Beam", PNAS , January 2007

A stiff skin forms on surface areas of a flat polydimethylsiloxane (PDMS) upon exposure to focused ion beam (FIB) leading to ordered surface wrinkles. By controlling the FIB fluence and area of exposure of the PDMS, one can create a variety of patterns in the wavelengths in the micrometer to submicrometer range, from simple one-dimensional wrinkles to peculiar and complex hierarchical nested wrinkles. Examination of the chemical composition of the exposed PDMS reveals that the stiff skin resembles amorphous silica. Moreover, upon formation, the stiff skin tends to expand in the direction perpendicular to the direction of ion beam irradiation. The consequent mismatch strain between the stiff skin and the PDMS substrate buckles the skin, forming the wrinkle patterns. The induced strains in the stiff skin are estimated by measuring the surface length in the buckled state. Estimates of the thickness and stiffness of the stiffened surface layer are estimated by using the theory for buckled films on compliant substrates. The method provides an effective and inexpensive technique to create wrinkled hard skin patterns on surfaces of polymers for various applications. Click here for access to the full article. See also the press release: Applied scientists create wrinkled 'skin' on polymers

Ashkan Vaziri's picture

Mechanics and deformation of the nucleus in micropipette aspiration experiment

Robust biomechanical models are essential for studying the nuclear mechanics and can help shed light on the underlying mechanisms of stress transition in nuclear elements. Here, we develop a computational model for an isolated nucleus undergoing micropipette aspiration. Our model includes distinct components representing the nucleoplasm and the nuclear envelope. The nuclear envelope itself comprises three layers: inner and outer nuclear membranes and one thicker layer representing the nuclear lamina.

Ashkan Vaziri's picture

Metallic sandwich plates subject to intense air shocks (by Ashkan Vaziri and John W. Hutchinson)

Recent results on fluid-structure interaction for plates subject to high intensity air shocks are employed to assess the performance of all-metal sandwich plates compared to monolithic solid plates of the same material and mass per area. For a planar shock wave striking the plate, the new results enable the structural analysis to be decoupled from an analysis of shock propagation in the air. The study complements prior work on the role of fluid-structure interaction in the design and assessment of sandwich plates subject to water shocks. Square honeycomb and folded plate core topologies are considered. Fluid-structure interaction enhances the performance of sandwich plates relative to solid plates under intense air shocks, but not as significantly as for water blasts. The paper investigates two methods for applying the loading to the sandwich plate-responses are contrasted for loads applied as a time-dependent pressure history versus imposition of an initial velocity. Click here for the full paper.

Ashkan Vaziri's picture

Deformation of the cell nucleus under indentation: Mechanics and Mechanisms

Computational models of the cell nucleus, along with experimental observations, can help in understanding the biomechanics of force-induced nuclear deformation and mechanisms of stress transition throughout the nucleus. Here, we develop a computational model for an isolated nucleus undergoing indentation, which includes separate components representing the nucleoplasm and the nuclear envelope. The nuclear envelope itself is composed of three separate layers: two thin elastic layers representing the inner and outer nuclear membranes and one thicker layer representing the nuclear lamina. The proposed model is capable of separating the structural role of major nuclear components in the force-induced biological response of the nucleus (and ultimately the cell). A systematic analysis is carried out to explore the role of major individual nuclear elements, namely inner and outer membranes, nuclear lamina, and nucleoplasm, as well as the loading and experimental factors such as indentation rate and probe angle, on the biomechanical response of an isolated nucleus in atomic force microscopy indentation experiment.

Ashkan Vaziri's picture

Mini-symposium on “Computational Methods in Impact Engineering” in Ninth U.S. National Congress on Computational Mechanics

The aim of the “Computational Methods in Impact Engineering” mini-symposium is to recognize the increasing role of the computation methods in Impact Engineering. It is now established that computational tools are indispensable to augment experimental techniques for the analysis of complex systems under dynamic loading. Many new computational techniques are currently being developed and new applications in the fields of impact and shock loadings are emerging. This mini-symposium will bring together engineers and scientists working in the area of Computational Impact Engineering.

Topics of interest include (but are not restricted to) the following:

Subscribe to RSS - Ashkan Vaziri's blog

Recent comments

More comments

Syndicate

Subscribe to Syndicate