Modelling nanoscale properties
In an inaugural article in the latest issue of PNAS, George C Schatz writes on Using theory and computation to model nanoscale properties. Here is the abstract of the article:
In an inaugural article in the latest issue of PNAS, George C Schatz writes on Using theory and computation to model nanoscale properties. Here is the abstract of the article:
I had known Liviu since his early days in the Engineering Science and Mechanics Department at Virginia Tech when I was just beginning my own academic career. I had received my PhD from this department in 1981 in an area (composite materials) that at the time was at the cutting edge of high technology. In 1985 I had come back to VA Tech from the industry to continue working in this exciting area in which the ESM Department excelled world-wide. Liviu had arrived shortly thereafter with an already established reputation as a top-notch scientist.
Active polymers are being developed to mimic a salient feature of life: movement in response to stimuli. Large deformation can lead to intriguing phenomena; for example, recent experiments have shown that a voltage can deform a layer of a dielectric elastomer into two coexistent states, one being flat and the other wrinkled. This observation, as well as the needs to analyze large deformation under diverse stimuli, has led us to reexamine the theory of electromechanics.
Modelling and simulation is sometimes said to be the third way of doing science, the first two being theory and experiment; see this essay in Science for example:
Hi all:
When I simulate a crack propagate along interface between film and substrate with cohesive element, different load-deflection curves of film were achieved when I applied load or displacement on film, respectively. I think it should achieve same results regardless which kind of load I selected. Please help me find what’s wrong with my simulation.
In the recent issue of Science, researchers from UCLA (Chung et al) report on an ambient pressure synthesis (using arc melting) of a compound, namely, rhenium diboride, which is superhard. Apparently, the material leaves scratch marks on the surface of diamond. Here is the abstract of the paper:
Recently Henry talked about software that could be used to simulate explosions and introduced CartaBlanca. Luming asked whether anyone had used the software, how good it was, and whether one needed Java to implement models into CartaBlanca.
Here is a video from the Seed magazine called Science in Silico. The video shows results from large scale simulations (and visualization) of fractals, microscopic dynamic processes in ribosomes, structure of viruses, bacterial flagellum, turbulence, explosions, and the modelling of cosmological events.
iMechanica was lunched on 9 September 2006. It took about five months for iMechanica to see its 1000th registered user. Today we are welcoming the 2000th registered user after only another two and half months.