Blog posts
Interfacial Thermal Stresses in a Bi-Material Assembly with a Low-Yield-Stress Bonding Layer
An approximate predictive model is developed for the evaluation of the interfacial thermal stresses in a soldered bi-material assembly with a low-yield-stress bonding material. This material is considered linearly elastic at the strain level below the yield point and ideally plastic at the higher strains. The results of the analysis can be used for the assessment of the thermally induced stresses
PhD Studentship - Imperial College London
An EPSRC-funded PhD Studentship is available in the Mechanics of Materials Group, Department of Mechanical Engineering at Imperial College London in the general area of theoretical/computational solid mechanics. Funding comes in the form of an EPSRC award (DTA scheme), and as such there is much flexibility in the project scope. A few tentative possibilities are: discrete dislocation modeling of high-temperature creep in dispersion-strengthened superalloys, crack nucleation criteria for functionally graded materials, fracture and post-operative remodeling of trabecular bone (jointly with the biomechanics group).
On the thermomechanical coupling of shape memory alloys and shape memory alloys composites
Smart materials have received much attention in recent years, especially due to their various applications in smart structures, medical devices, actuators, space and aeronautics. Among these
materials, shape memory alloys exhibit extremely large, inelastic, recoverable strains (of the order of 10%), resulting from transformation between austenitic and martensitic phases. This
transformation may be induced by a change, either in the applied stress, the temperature, or both.
Mechanics Symposium in Beijing 2007
Some of you may be interested in attending this conference, and the post-conference tour. Details are described in the two attached files.
Symposium on Nanoscale, Biological, Cellular and Nonlinear Materials at the 2007 IMECE
The 2007 International Mechanical Engineering Congress and Exposition
November 11-16, 2007, Seattle, Washington, Sponsored by the Composites and Elasticity Committees, Applied Mechanics Division
Track 18-7 Nanoscale, Biological, Cellular and Nonlinear Materials
Symposium "Multiphysics behaviors of materials at the nanoscale" at USNCCM-09
The mechanical, thermal, electrical, and chemical behaviors of nanostructured materials such as nanocrystalline materials, nanowires, nanofilms, and nanotubes have been increasingly studied with advanced simulation techniques such as the molecular dynamics (MD) method and its various variants including the Car-Parrinello method, Monte Carlo method, the tight-binding MD method, and first principle methods. However, quite often the analyses neglect the correlations among the different types of behaviors of the materials. Characterization of such correlations necessitates multiphysics approaches in modeling, simulation, and experiments. Examples include fatigue of nanocrystalline materials in corrosive environments, piezoelectric behavior of nanowires, and thermal-mechanical coupling of the behavior of nanobelts. With advances in the development of nanomaterials, there is a strong need to quantify material behavior accounting for multiphysics processes in a coupled manner. This symposium is intended to bring together researchers in multiphysics modeling, simulation and experiments of nanomaterials and nanostructured materials. The focus is primarily on a survey of the state of the art in molecular level multiphysics modeling, simulation, and experiments. Presentations on method development, behavior characterization, atomistic description, and continuum representation are all strongly encouraged. (USNCCM website)
Adaptation of arteries to pressure changes
Arteries are living organs that can remodel themself in response to stress changes. Arterial remodeling is a big topic and this paper shows only a tip of the iceberg.
Price tag for a college education: $43,980 per year
Modeling Surface Stress Effects on Nanomaterials
We present a surface Cauchy-Born approach to modeling FCC metals with nanometer scale dimensions for which surface stresses contribute significantly to the overall mechanical response. The model is based on an extension of the traditional Cauchy-Born theory in which a surface energy term that is obtained from the underlying crystal structure and governing interatomic potential is used to augment the bulk energy.