Skip to main content

Blog posts

Deformation of FCC Nanowires by Twinning and Slip

Submitted by Harold S. Park on

We present atomistic simulations of the tensile and compressive loading of single crystal FCC nanowires with <100> and <110> orientations to study the propensity of the nanowires to deform via twinning or slip.  By studying the deformation characteristics of three FCC materials with disparate stacking fault energies (gold, copper and nickel), we find that the deformation mechanisms in

A Discussion on Time Integrators

Submitted by Kapil.Nandwana on

Hi to all :

This is my first blog entry . And I have only recently started my Research work (just 2 months) .So please bear with me my lack of thorough knowledge in the topic .

What I want to know is "what is the impact of the papers on Asynchronous Variational Integrators and Variational Integrators (published in 2003) ?" I mean what I was wondering is given that they have so many beneficial properties , how many researcher have actually started using this technique of time integration in their research .

Notes on Nonlinear Fracture Mechanics

Submitted by John W. Hutchinson on

These are the notes I wrote at the Technical University of Denmark in 1979. Zhigang Suo and I will be using these in the course on fracture and thin film mechanics (ES 242r) this spring (2007). This is a joint course with the University of Nebraska.

Engineering Sciences 242r: Fracture Mechanics of Thin Films and Composite Materials

Submitted by John W. Hutchinson on

Time. Thursday and Tuesday. 1:30-3:00 pm (Harvard University), 12:30-2:2:00 pm (University of Nebraska). First meeting: 1 February 2007

Place. Harvard University: Fairchild 102 (map). University of Nebraska: 111 Walter Scott Engineering Center

Course website (this page): node/754

Instructors

Flip test: imagine continuum mechanics as a revolutionary idea

Submitted by Zhigang Suo on

Let's say the world has only e-books, then someone introduces this technology called 'paper.' It's cheap, portable, lasts essentially forever, and requires no batteries. You can't write over it once it's been written on, but you buy more very cheaply. Wouldn't that technology come to dominate the market?

Symposium on "Mechanics of Nanofabrication and Nanostructure Growth" at the 2007 IMECE (ASME Meeting)

Submitted by Yanfei Gao on

(Please also refer to node/711 for the introduction of this ASME meeting and some important changes. )

Mechanics has been playing a critical role in understanding the fabrication and reliability of nanostructured material systems, such as the self-assembly of quantum dots during heteroepitaxial thin film growth. Sponsored by the Elasticity Committee of Applied Mechanics Division, this symposium will identify opportunities and challenges in mechanics of materials that are motivated from a variety of novel and emerging nanofabrication and nanostructure growth methods. Presentations in experimental, theoretical, and computational studies are solicited in the following areas (but not limited to):

A subdomain collocation method based on Voronoi domain partition and reproducing kernel approximation

Submitted by Jinxiong Zhou on

A subdomain collocation method based on Voronoi diagrams and reproducing kernel approximation is presented. The unkonwn field variables are approximated via reproducing kernel approximation. The body integration arising from the numerical evaluation of Galerkin weak form is converted into much cheaper contour integration along the boundary of each Voronoi cell. The Voronoi cells also provide an natural structure to perform h-adaptivity.

A short paper on T-stress of an interfacial crack in a bi-material strip

Submitted by Jae-Hyun Kim on

The attached file is on T-stress of an interfacial crack in a bi-material strip. The geometry of the problem is the same with that of Suo and Hutchinson (1990, IJF). Using a conservation integral technique, a formula for T-stress is derived with two numerical factors.