User login

You are here

molecular dynamics

Kmomeni's picture

PhD Positions in Multiscale Modeling of Materials Under Extreme Conditions

PhD positions are open immediately in Advanced Hierarchical Materials by Design Labat Louisiana Tech Universityon multiscale modeling of materials under extreme conditions. This will be a collaborative project with MITGeorgia Tech, and Idaho National Labthat is supported by Department of Energy.  The candidates must have earned a degree in Mechanical Engineering or related fields (applicants with a MSc will be given priority) and have a solid background in theoretical and computational mechanics.

Jingjie Yeo's picture

Multiscale Design of Graphyne‐Based Materials for High‐Performance Separation Membranes Computational modeling and simulations play an integral role in the bottom‐up design and characterization of graph‐n‐yne materials. Here, the state of the art in modeling α‐, β‐, γ‐, δ‐, and 6,6,12‐graphyne nanosheets for synthesizing graph‐2‐yne materials and 3D architectures thereof is discussed.

Kmomeni's picture

PhD position in Multiscale Modeling Materials Under extreme conditions

An immediate fully-funded Ph.D. position is open in Advanced Hierarchical Materials by Design Lab at Louisiana Tech University on multiscale modeling of materials under extreme conditions. The project involves collaboration with the computational research groups at national labs, as well as experimental researchers from MIT and Georgia Tech to test and validate the models and codes.

Kmomeni's picture

Two PhD Positions in Multiscale Modeling of Materials Under Extreme Conditions

Two PhD positions are open for Spring 2019 in Advanced Hierarchical Materials by Design Labat Louisiana Tech Universityon multiscale modeling of materials under extreme conditions. The candidates must have earned a degree in Mechanical Engineering or related fields (applicants with a MSc will be given priority) and have a solid background in theoretical and computational mechanics. Having knowledge of continuum mechanics, finite element modeling, and a programming language (preferably C++) is a plus. 

Jingjie Yeo's picture

Multiscale Modeling of Silk and Silk‐Based Biomaterials—A Review In celebration of Stern Family Professor of Engineering David L. Kaplan, on the occasion of his 65th birthday, we review a selection of relevant contributions of computational modeling to understand the properties of natural silk, and to the design of silk-based materials, especially combined with experimental methods.

Jingjie Yeo's picture

Silica Aerogels: A Review of Molecular Dynamics Modelling and Characterization of the Structural, Thermal, and Mechanical Properties The second volume of the Handbook of Materials Modeling is now online: We reviewed the development of new empirical molecular dynamics forcefields, novel methods of generating aerogels’ percolated backbones, and compelling algorithms for characterizing their structural, mechanical, and thermal

Jingjie Yeo's picture

Effects of CNT size on the desalination performance of an outer-wall CNT slit membrane We investigate the effect of varying carbon nanotube (CNT) size on the desalination performance through slit confinements formed by horizontally aligned CNTs stacked on top of one another. By increasing the CNT size, the results obtained from this study indicate a corresponding increase in the water flow rate, accompanied by a slight reduction in salt rejection performance.

Wenjie Xia's picture

PhD positions in multiscale modeling of materials at North Dakota State University

One or two fully funded PhD positisons (tuition plus reasearch or teaching assistantships) are immediately available in the Computational Dynamics and Materials Laboratory at North Dakota State University (NDSU) during the academic year 2018~2019.

Jingjie Yeo's picture

Effects of oscillating pressure on desalination performance of transverse flow CNT membrane In parallel with recent developments in carbon nanomaterials, there is growing interest in using these nanomaterials for desalination. To date, many studies have affirmed the potential of using such nanomaterials for constant pressure desalination operation. In this work, the performance of such membrane when subjected to oscillatory pressure at sub-nanosecond is investigated in detail.

Erik Bitzek's picture

Group Leader Position in Computational Materials Science

The Institute for General Material Properties of the Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) is inviting applications for a group leader in the area of Computational Materials Science. The Materials Modeling Group conducts research into the elementary defects of the crystalline lattice and on how their organization and interaction influence the mechanical properties and failure of metallic materials.

Jingjie Yeo's picture

Multiscale modeling of keratin, collagen, elastin and related human diseases: Perspectives from atomistic to coarse-grained molecular dynamics simulations Scleroproteins are an important category of proteins within the human body that adopt filamentous, elongated conformations in contrast with typical globular proteins. These include keratin, collagen, and elastin, which often serve a common mechanical function in structural support of cells and tissues. Genetic mutations alter these proteins, disrupting their functions and causing diseases.

mohsenzaeem's picture

Understanding Homogeneous Nucleation in Solidification of Aluminum by Molecular Dynamics Simulations (OPEN ACCESS)

Homogeneous nucleation from aluminum (Al) melt was investigated by million-atom molecular dynamics (MD) simulations utilizing the second nearest neighbor modified embedded atom method (MEAM) potentials. The natural spontaneous homogenous nucleation from the Al melt was produced without any influence of pressure, free surface effects and impurities. Initially isothermal crystal nucleation from undercooled melt was studied at different constant temperatures, and later superheated Al melt was quenched with different cooling rates.

Jingjie Yeo's picture

High-Strength, Durable All-Silk Fibroin Hydrogels with Versatile Processability toward Multifunctional Applications Hydrogels are the focus of extensive research due to their potential use in fields including biomedical, pharmaceutical, biosensors, and cosmetics. However, the general weak mechanical properties of hydrogels limit their utility. Here, pristine silk fibroin (SF) hydrogels with excellent mechanical properties are generated via a binary-solvent-induced conformation transition (BSICT) strategy.

Erik Bitzek's picture

Open Postdoc & PhD positions in Computational Materials Science

In the next months, we have a couple of openings for Postdoctoral fellows and PhD students in Computational Materials Science. If you are interested and at the 2017 MRS Fall Meeting in Boston (Nov 25th - Dec. 2nd) , hit me up!

A.Tabarraei's picture

Ph.D. Position in Computational Solid Mechanics

Two PhD positions are available in the Department of Mechanical Engineering and Engineering Science at the University of North Carolina at Charlotte.
The research project is in the multiscale modeling of the stress corrosion cracking. Candidates should have a strong background in continuum mechanics, finite elements modeling and/or molecular dynamics simulations. Programming experience in Fortran or C++ is a big plus. The starting date for this position is January 2018 or August 2018. Interested candidates please send a detailed CV along with the name and contact info of three references to

keten's picture

Postdoctoral Position At Northwestern University

A postdoctoral associate position is available immediately at the Computational Nanodynamics Laboratory at Northwestern University with Prof. Sinan Keten. This research project focuses broadly on the atomistic and multi-scale modeling of biomolecular materials such as nanocellulose and their interfaces with polymers. A Ph.D. in a related field is required for this position. Expertise in atomistic and molecular modeling techniques (molecular dynamics, density functional theory, coarse-grained molecular simulations) is required. Additionally, a strong background in soft matter research (polymer science, biophysics, or related areas) is highly desired. Interested candidates should send a CV, a summary of research interests, contact information of three references, and three most relevant publications as a single pdf file to Evaluations will begin immediately, and the start date is flexible.

Jingjie Yeo's picture

International Journal of Computational Materials Science and Engineering (IJCMSE)

As the Editorial Board member of IJCMSE, I enthusiastically welcome the high quality submissions from the community of iMechanica. The objective of the journal is the publication and wide electronic dissemination of innovative and consequential research in all aspects computational materials science and engineering, featuring the most advanced mathematical modeling and numerical methodology developments.


Subscribe to RSS - molecular dynamics

Recent comments

More comments


Subscribe to Syndicate