User login

Navigation

You are here

silk

Jingjie Yeo's picture

Conductive Silk‐Based Composites Using Biobased Carbon Materials

Fresh in Advanced Materials! Synthesis & molecular dynamics modeling of conductive, highly stretchable, flexible, & biocompatible silk‐based composite sensors using biobased carbon materials. https://doi.org/10.1002/adma.201904720

Jingjie Yeo's picture

Multiscale Modeling of Silk and Silk‐Based Biomaterials—A Review

https://doi.org/10.1002/mabi.201800253 In celebration of Stern Family Professor of Engineering David L. Kaplan, on the occasion of his 65th birthday, we review a selection of relevant contributions of computational modeling to understand the properties of natural silk, and to the design of silk-based materials, especially combined with experimental methods.

Jingjie Yeo's picture

Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical wound-healing (Invited review)

https://doi.org/10.1016/j.msec.2018.01.007 The present review will introduce the basic concepts of silk-based electronics/optoelectronics including the latest technological advances on the use of silk fibroin in combination with other functional components, with an emphasis on improving the performance of next-generation silk-based materials. It also highlights the patterning of silk fibroin to produce micro/nano-scale features, as well as the functionalization of silk fibroin to impart antimicrobial (i.e. antibacterial) properties.

Jingjie Yeo's picture

High-Strength, Durable All-Silk Fibroin Hydrogels with Versatile Processability toward Multifunctional Applications

http://onlinelibrary.wiley.com/doi/10.1002/adfm.201704757/full Hydrogels are the focus of extensive research due to their potential use in fields including biomedical, pharmaceutical, biosensors, and cosmetics. However, the general weak mechanical properties of hydrogels limit their utility. Here, pristine silk fibroin (SF) hydrogels with excellent mechanical properties are generated via a binary-solvent-induced conformation transition (BSICT) strategy.

Subscribe to RSS - silk

Recent comments

More comments

Syndicate

Subscribe to Syndicate