Skip to main content

silk

Conductive Silk‐Based Composites Using Biobased Carbon Materials

Submitted by Jingjie Yeo on

Fresh in Advanced Materials! Synthesis & molecular dynamics modeling of conductive, highly stretchable, flexible, & biocompatible silk‐based composite sensors using biobased carbon materials. https://doi.org/10.1002/adma.201904720

Multiscale Modeling of Silk and Silk‐Based Biomaterials—A Review

Submitted by Jingjie Yeo on

https://doi.org/10.1002/mabi.201800253 In celebration of Stern Family Professor of Engineering David L. Kaplan, on the occasion of his 65th birthday, we review a selection of relevant contributions of computational modeling to understand the properties of natural silk, and to the design of silk-based materials, especially combined with experimental methods.

Unraveling the molecular mechanisms of thermo-responsive properties of silk-elastin-like proteins by integrating multiscale modeling and experiment

Submitted by Jingjie Yeo on

http://dx.doi.org/10.1039/C8TB00819A

Fresh in 2018 Journal of Materials Chemistry B HOT Papers! We present integrative experimental and computational understanding of the thermal response in adaptive hydrogels tailor-made from silk-elastin-like proteins that are tunable and responsive to multiple simultaneous external stimuli.

Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical wound-healing (Invited review)

Submitted by Jingjie Yeo on

https://doi.org/10.1016/j.msec.2018.01.007 The present review will introduce the basic concepts of silk-based electronics/optoelectronics including the latest technological advances on the use of silk fibroin in combination with other functional components, with an emphasis on improving the performance of next-generation silk-based materials. It also highlights the patterning of silk fibroin to produce micro/nano-scale features, as well as the functionalization of silk fibroin to impart antimicrobial (i.e. antibacterial) properties.

High-Strength, Durable All-Silk Fibroin Hydrogels with Versatile Processability toward Multifunctional Applications

Submitted by Jingjie Yeo on

http://onlinelibrary.wiley.com/doi/10.1002/adfm.201704757/full Hydrogels are the focus of extensive research due to their potential use in fields including biomedical, pharmaceutical, biosensors, and cosmetics. However, the general weak mechanical properties of hydrogels limit their utility. Here, pristine silk fibroin (SF) hydrogels with excellent mechanical properties are generated via a binary-solvent-induced conformation transition (BSICT) strategy.