Skip to main content

Blog posts

Model Reduction of Large Proteins for Normal Mode Studies

Submitted by Kilho Eom on

Recently, I reported the model reduction method for large proteins for understanding large protein dynamics based on low-frequency normal modes. This work was pubslihed at Journal of Computational Chemistry (click here).

Coarse-Graining of protein structures for the normal mode studies

Abstracts 

Researcher Spotlight: Professor Lambert Ben Freund (LBF)

Submitted by Managers on

Lambert Ben Freund (LBF) was born on November 23, 1942, in Johnsburg, Illinois, a tiny rural community of a few hundred people in the northeast corner of the state. This part of the Midwest was opened to European settlement by the Black Hawk War of the 1830s. A small delegation of his ancestors arrived in the area in 1841. The enthusiastic letters they wrote to relatives waiting in Bavaria and the Rhineland resulted in rapid settlement of the area by immigrant families in the mid-1800s.

Quantum Stability of Metallic Thin Films and Nanostructures

Submitted by Zhenyu Zhang on

When a metal system shrinks its dimension(s), the conduction electrons inside the metal feel the squeezing, and are forced into (discrete) quantum states. Such confined motion of the conduction electrons may influence the global or local stability of the low dimensional systems, and in the case of a thin film on a foreign substrate this "quantum energy" of electronic origin can easily overwhelm the strain effects in definging the film stability, thereby severely influencing the preferred growth mode (see, e.g., Suo and Zhang, Phys. Rev. B 58, 5116 (1998)).

Spacing effect on dislocation injection from sharp features in strained silicon structures

Submitted by Juil Yoon on

In practice, the SiN stripes or pads are periodically patterned on silicon, so the spacing effect on dislocation injection from sharp features deserves attention. As in Figure 1, the SiN stripes with residue stress, of width L and thickness h, are periodically patterned with spacing S. In the numerical calculation, we take shear modulus and Poisson’s ratio of Si3N4 to be 54.3 GPa and 0.27, and those of silicon 68.1GPa and 0.22, the same as in Ref.[1].

Symposium on Characterization and Modeling of Time-Dependent Materials and Processes at the 2007 ASME M&M Conference

Submitted by H Jerry Qi on

The Symposium on Characterization and Modeling of Time-Dependent Materials and Processes at the 2007 ASME Mechanics and Materials conference will be held June 3-7, 2007, at the University of Texas at Austin. Additional information about the conference can be found at the conference website.

Papers dealing with modeling and experimental aspects of the subject area, involving all materials, are sought. The mechanical response should be non-negligable in cases involving non-mechanical fields. Possible topics include, but are not limited to: characterization and modeling of behavior at multiple scales; viscoelasticity, viscoplasticity; transport, chemically and electronically active processes; multiphase and biomaterial systems; thermodynamics; shape memory; mechanics of testing; micro/nanoindentation on time-dependent materials; dynamic behavior of polymers and composites; large deformations; residual stresses; time-dependent damage and failure; polycrystalline and single crystal behaviors; multifunctional materials; mechanics of processing.

Postdoctoral Position in Micromechanics and Fatigue of Natural Composites, at Risø National Laboratory, Denmark

Submitted by Leon Mishnaevsky on


Applications are invited from suitably qualified candidates for a Postdoc/Research Scientist position in the framework of a Danish/Nepalese collaborative research project, in the Materials Research Department of Risø National Laboratory, Denmark 

Job description: As a postdoc/scientist, you will carry out numerical micromechanical modelling of fatigue processes in wood. The theme of the project is the computational analysis of the effect of microstructures of natural materials (wood), coatings and other microscale parameters on their fatigue resistance and lifetime under cyclic loading. The experiments and verification of results will be carried out in collaboration with project partners in Kathmandu, Nepal. The deliverables of the project should include the development of recommendations for the improvement of the reliability of wind turbine blades, produced from coated wood in Nepal, as well as extracting “lessons from nature” to be used in the improvement of polymer matrix fiber reinforced composites for wind energy applications.  

Mechanics and deformation of the nucleus in micropipette aspiration experiment

Submitted by Ashkan Vaziri on

Robust biomechanical models are essential for studying the nuclear mechanics and can help shed light on the underlying mechanisms of stress transition in nuclear elements. Here, we develop a computational model for an isolated nucleus undergoing micropipette aspiration. Our model includes distinct components representing the nucleoplasm and the nuclear envelope. The nuclear envelope itself comprises three layers: inner and outer nuclear membranes and one thicker layer representing the nuclear lamina.