Skip to main content

Blog posts

Semiflexible polymer chain under sustained tension as a model of cytoskeletal rheology

Submitted by Dimitrije Stamenovic on

This is a model of a single semiflexible polymer chain under sustained tension. The model captures two key features of the cytoskeletal rheology: a) the power-law behavior; and b) the dependence of the power-law on mechanical prestress. The model also reveals the underlying mechanisms.

EM 397 Term Paper: Effects of Substrate Compliance on Buckling Delamination of Thin Films under Compression

Submitted by Haixia Mei on

For films or coatings deposited on substrate at high temperature, residual compressive stresses are often induced in the surface layers because of the mismatch in the thermal expansion coefficients. Under such compressive residual stresses, the surface thin film is susceptible to buckling-driven delamination. Various shapes of buckled region are observed, including long straight-sided blisters, circular and the ‘telephone cord’ blister.

ES 246 project: Plane Strain Extrusion - Slip-line Field Solution vs. FEM Solution

Submitted by Nanshu Lu on

Due to maturity of FEM package, slip-line field theory is not widely used these days. However, we shall keep in mind that slip-line field analysis can provide analytical solutions to a number of very difficult problem which may involve huge deformations or velocity discontinuities, e.g. many metal forming processes. To evaluate these two analytical and numerical methods for plasticity I will try a simple example, compare these two solutions and finally get into a conclusion of my own.

Mechanics vs. Biochemistry in Adhesions-Cytoskeleton-Nucleus Signal Transduction in Cells

Submitted by Alexander A. Spector on

The essence of mechanobiology is, probably, the interrelation between mechanical and biochemical factors.  An exciting example of such phenomenon is signaling associated with the interaction between the cell and extracellular matrix (EM).  While some purely biochemical pathways initiated in the area of contact of the cell and EM are known, there are interesting ideas how the mechanical forces, stresses and strains can be involved too. This view goes back to works of Donald Ingber's group in the 90s that showed how perturbations of the adhesion area as a whole and of an individual integrin result in deformation of the cell nucleus. Interestingly, a distinguished oncologist at Johns Hopkins, Donald Coffey, published similar experimental results about the same time, and he also demonstrated that the observed cytoskeleton/nucleus interaction is different in tumor cells. There are several separate pieces of the puzzle that have been resolved: mechanical forces are generated at focal adhesions, the cytoskeleton is involved, nucleus deforms, gene expression changes as a result of perturbation of the adhesions, however, the whole picture of the interrelated mechanical and biochemical factors has yet to be understood. We recently published some results on this topic in the Journal of Biomechanical Engineering (Jean et al., 2004 and 2005). I was glad to find an interest in the same problem from some participants of this website (e.g., N. Wang, Z. Suo,   Long-distance propagation of forces in a cell, 2005 and P.R. LeDuc and R.M. Bellin, Nanoscale Intracellular Organization and Functional Architecture Mediating Cellular Behavior, 2006). This aspect of mechanotransduction is important for many areas beyond mechanics such as cancer, wound healing, cell adhesion and motility, effect of surface micro- and nanopatterning, etc.

In Quest of Virtual Tests for Structural Composites

Submitted by Qingda Yang on

Listed below is a recent publication of mine in Science for your possible interest and critics. This is a review article focusing on the multiscale simulation issues in strucutral composites. I will be more than happy to discuss with those of you who are interested. The following is the abstract.

The difficult challenge of simulating diffuse and complex fracture patterns in tough structural composites is at last beginning to yield to conceptual and computational advances in fracture modeling. Contributing successes include the refinement of cohesive models of fracture and the formulation of hybrid stress-strain and traction-displacement models that combine continuum (spatially averaged) and discrete damage representations in a single calculation. Emerging hierarchical formulations add the potential of tracing the damage mechanisms down through all scales to the atomic. As the models near the fidelity required for their use as virtual experiments, opportunities arise for reducing the number of costly tests needed to certify safety and extending the design space to include material configurations that are too complex to certify by purely empirical methods.

ssh -Y option with X11 on Macs

Submitted by John E. Dolbow on

I've been a Mac person ever since they started basing their operating systems on what is essentially a Linux kernel.

One of the frustrating things, however, concerned the lack of OpenGL support. With the recent update to X11 by Apple, this is fixed. However, in order to use it remotely, from the X11 terminal, one has to use the option

%ssh -Y login_name@remotehost

as opposed to the previously used

%ssh -X login_name@remotehost

This is a pretty obscure change, and has not been well-documented by Apple.

 

Gecko, Spiderman and Climbing Robot (Video)

Submitted by Teng Li on

I am at Boston for MRS 2006 Fall meeting this week, where I met a real "spiderman" at the poster session tonight. I'd like to share with you the following videos which were posted at YouTube by the "spiderman" himself, Mr. Jose Berengueres at Tokyo Instititute of Technology.

Mr. "Spiderman" also has posted a video on fasting climbing robot.

citation

Submitted by Madhav Mani on

I guess it's time that I cite some papers that are relevant to what I am looking at.

A paper by
L.Mahadevan et al.: Elements of draping

and another one

Confined elastic developable surfaces: cylinders, cones and the elastica,
E. Cerda and L. Mahadevan, Proceedings of the Royal Society of London (A), 461, 671-700, 2005.


ES 246 Project: Large Deformation Plasticity of Amorphous Solids, with Application and Implementation into Abaqus

Submitted by Kristin M. Myers on

node/add/imageI propose to investigate an elastic-viscoplastic constitutive model proposed by Anand and Gurtin [1] for the large deformation of amorphous solids.  Specifically, I will present the constitutive framework proposed for elastic-plastic amorphous materials, I will implement the constitutive equations into Abaqus/Explicit, and I will compare numerical results with experimental results for polycarbonate [2]. 

 

A Variable Core Model and the Peierls Stress for the Mixed Dislocation

Submitted by Vlado A. Lubarda on

A variable core model of a moving crystal dislocation is proposed and used to derive an expression for the Peierls stress. The dislocation width varies periodically as a dislocation moves through the lattice, which leads to an expression for the Peierls stress in terms of the difference of the total energies in the crystal corresponding to stable and unstable equilibrium configurations of the dislocation, rather than the difference in the misfit energies alone. Results for both edge and mixed dislocations are given and proposed to be used in conjunction with ab initio calculations.