Skip to main content

Blog posts

Who Owns Your Content? [draft]

Submitted by Michael H. Suo on

Who owns your content? Is it you or the copyright holder? If it isn't you, then why did you pay for it? All these questions are at the heart of the current war for the rights to music, movies, and everything in between.

The first shots of this war were fired with the start of the digital age. Before, the best you could was make physical copies of media. Technically possible, yes, but the equipment and manpower needed to run an operation on a scale large enough to threaten publishers was nearly impossible to obtain without being noticed.

Some numerical mechanics software

Submitted by Mogadalai Gururajan on

Recently, during one of my net searches, I came across this page of RPI, where I learnt about a couple of numerical mechanics software which might be of interest to some of you.

FMDB:

As for the effort toward the scalable engineering simulations on distributed environements, we addressed this challenge by developing a distributed mesh data management infrastructure that satisfies the needs of distributed domain of applications.

A structure-based sliding-rebinding mechanism for catch bonds

Submitted by Cheng Zhu on

This is a paper by Jizhong Lou and myself, which is in press in Biophysical Journal.

Abstract.  Catch bonds, whose lifetimes are prolonged by force, have been observed in selectin-ligand interactions and other systems. Several biophysical models have been proposed to explain this counter-intuitive phenomenon, but none was based on the structure of the interacting molecules and the noncovalent interactions at the binding interface. Here we used molecular dynamics simulations to study changes in structure and atomic-level interactions during forced unbinding of P-selectin from P-selectin glycoprotein ligand-1. A mechanistic model for catch bonds was developed based on these observations. In the model, "catch" results from forced opening of an interdomain hinge that tilts the binding interface to allow two sides of the contact to slide against each other. Sliding promotes formation of new interactions and even rebinding to the original state, thereby slowing dissociation and prolonging bond lifetimes. Properties of this sliding-rebinding mechanism were explored using a pseudo-atom representation and Monte Carlo simulations. The model has been supported by its ability to fit experimental data and can be related to previously proposed two-pathway models.

How can we obtain more information from protein structure?

Submitted by Cheng Zhu on

We know - or believe - protein function is determined by structure. Crystallographic and NMR studies can provide protein structures with atomic-level details at equilibrium. MD simulations can follow protein conformational changes in time with fs temporal resolution in the absence or presence of a bias mechanism, e.g., applied force, used to induce such changes.

Mode-3 spontaneous crack propagation along functionally graded bimaterial interfaces

Submitted by Dhirendra Kubair on

This is a paper that has been accepted for publication in the Journal of the Mechanics and Physics of Solids from our group. The paper describes the combined effect of material inertia and inhomogeneous material property variation on spontaneous cohesive-crack propagation in functionally graded materials. The preprint is attached as a PDF.

Abstract- The effects of combining functionally graded materials of different inhomogeneous property gradients on the mode-3 propagation characteristics of an interfacial crack are numerically investigated. Spontaneous interfacial crack propagation simulations were performed using the newly developed spectral scheme. The numerical scheme derived and implemented in the present work can efficiently simulate planar crack propagation along functionally graded bimaterial interfaces. The material property inhomogeneity was assumed to be in the direction normal to the interface. Various bimaterial combinations were simulated by varying the material property inhomogeneity length scale. Our parametric study showed that the inclusion of a softening type functionally graded material in the bimaterial system leads to a reduction in the fracture resistance indicated by the increase in crack propagation velocity and power absorbed. An opposite trend of increased fracture resistance was predicted when a hardening material was included in the bimaterial system. The cohesive tractions and crack opening displacements were altered due to the material property inhomogeneity, but the stresses ahead of the cohesive zone remained unaffected.

ES 246 Project: Saint-Venant Torsion Problem

Submitted by Jenn Furstenau on

I plan to explore the Saint-Venant torsion problem applied to prismatic bars with elastic-plastic behavior. Wagner and Gruttmann have developed a finite element method to obtain the elastic/plastic stresses of a bar using a single load step. In particular, I will present the constitutive model that they have developed, and then use ABAQUS to apply Wagner and Gruttmann’s model to various cross-sections. I will try to reproduce their results for some simple cross-sections, as well as exploring some more complicated cross sections.

EM 397 Term Paper: Dislocations in Epitaxial Thin Films

Submitted by Anonymous (not verified) on

Dislocations are common in epitaxial systems. For a thin film epitaxially grown on a substrate with coherent interface, it may have spontaneously-formed dislocations when its thickness is larger than certain value, i.e. critical thickness. The presence of dislocations can have an adverse effect on electrical performance of semiconductor materials, providing easy diffusion paths for dopants to lead to short circuits, or recombination centers to reduce carrier density. And, formation of dislocations is one of the most observed mechanisms of relaxation of mismatch strain. However, in optoelectric applications, strain alters the electronic bandgap and band edge alignment, and should be maintained. So, controlling formation of dislocations is very important in the manufacture of microelectronic and optoelectronic devices.

This term paper will review some basic concepts and try to produce some understanding about the control dislocation formation.

EM 397 Term Paper: Channeling crack of low-k dielectric films

Submitted by Kuan Lu on

Today low-k dielectric materials are integrated into computer chips to improve the operation speed and reduce the cross-talk noise. Due to weak mechanical properties of low-k dielectric materials, cohesive failure is subjected to occur. Channel cracking is one common mode of cohesive failure. In this term paper, several potential issues relevant to channel cracking of low-k dielectric thin films are reviewed.

ES 246 project: Planar Composite under Plastic Deformation

Submitted by Xuanhe Zhao on

The mechanical performance of a homogeneous material can be varied by the addition of second-phase particles. In this project, we will model a planar composite under plastic deformation. As shown on the following figure, the composite consists of matrix material and randomly-distributed inclusion particles. The matrix is assumed to be an elastic-plastic material with isotropic or kinematic hardenings, and the inclusion particle pure elastic with a higher Young’s modulus. The stress/strain field throughout the composite will be calculated numerically with finite element method.