Skip to main content

Blog posts

Pushing Mechanics to the Up Front of Design

Submitted by Xiao-Yan Gong on

When a mechanical engineer and a material scientist were asked for the root cause of an in-vivo fracture. Mechanical engineer pointed to the loading and the material scientist pointed to the processing. While they both are correct, they both also missed the real ROOT cause, the design.

It is very common that medical device design engineers are so focused on the device functionality that often the very basic mechanics is overlooked. Lack of knowledge on the in-vivo environment (Design Requirements) is another subject to blame. However, it is common that even technology driven companies have gaps between design department and duarability deparment. Up front design engineers do not necessarily keep up with the fast paces of material advances. On the other hand, downstram subject matter experts, device tesing teams or often the R&D departments are not informed of design changes before the design is fixed. The problem is worse often in industrial leaders than in start-ups, but the sympton is the same, problem found in animal studies and/or clinical trials before they reached industrial subject matter experts.

Mechanics in Medical Implant Industry

Submitted by Xiao-Yan Gong on

The major challenge in medical implant industry is the knowledge about human body. Had we know the human body and its functions better, we can make better and reliable implants. Below are two examples that I have learned.

Let's start from stent, a small, lattice-shaped, metal tube that is inserted permanently into an artery. The stent opens the narrowed artery so that an adequate supply of blood can be restored. See this FDA site for further detail.

Stent has revolutionized the treatments for cardiovascular disease and the interventional system. However, stent fractures are commonly observed in-vivo in the past years and has become a concern for patient wellness and therefore a challenge/opportunity for mechanical engineering. Both the engineering and the medical care societies have to work together to solve this issue. It is very surprising that little publications are available to study the key issues such as artery deformation, motion, its mechanical properties and its variations among patient age, race, and other factors. As a result, current stents, even they have been proven to be lifesavers for many patients, they are not necessarily a satisfactory product for a mechanical engineer. We can not wait for the medical care society to give us the information because they often concern and focus on different issues than us. In addition, they can not work alone to come up with the necessary equipments. Therefore, we need proactive to interact and help each other to get what we want. The day we know our interventional system better is the day that we can make better stents because stents can only be as good as our knowledge to the interventional system.

University of Michigan, tenure-track faculty positions

Submitted by Xuanhe Zhao on

 University of Michigan, tenure-track faculty positions

The Department of Mechanical Engineering, University of Michigan, Ann Arbor, invites applications for tenure-track faculty positions in various areas of mechanical engineering including design and manufacturing, dynamics, systems and controls, materials and solid mechanics and thermal/fluid sciences. Candidates with research interests in automotive engineering, biotechnology, eco/sustainable systems, energy-systems, manufacturing, and micro/nano systems are particularly encouraged to apply.

Applicants should have an earned Ph.D. in Mechanical Engineering or related fields, a demonstrated record for conducting independent research, and the potential for leadership and impact in teaching and research. Appointments at all levels will be considered. For best consideration, candidates should apply by February 28, 2007, but the positions will remain open until filled.

Prediction of femoral head collapse in osteonecrosis

Submitted by Konstantin Volokh on

OSTEONECROSIS is the death of bone that results in the collapse of the bony structure, leading to joint pain, bone destruction, and loss of function. Destruction of the bone frequently is severe enough to require joint replacement surgery. Osteonecrosis is a common disorder and accounts for 10% or more of the 500,000 total joint replacement procedures performed annually in the United States. Approximately 75% of patients with osteonecrosis are between 30 and 60 years of age.

From the point of view of mechanics, osteonecrosis means deterioration of mechanical properties of the bone. Decrease of the magnitude of the elastic modulus of the bone leads to its inability to bear the external load and culminates in bone damage and fracturing. For a couple of decades the engineers were trying to estimate the critical stress-strain state of the femoral head using the available data on the osteonecrotic bone properties, finite element analysis based on 3D elasticity, and Von Mises stress as a criticality condition. The fact that the cortical shell of the femoral head is significantly stiffer than the underlying cancellous bone did not attract much attention yet. However, from the solid mechanics point of view the difference in the stiffness of the cortical and cancellous parts of the femoral head under both normal and necrotic conditions is important. This difference allows for considering the femoral head as an elastic cortical shell on an elastic cancellous foundation. This, in its turn, suggests the buckling of the cortical shell as a possible starting point of the overall head collapse. The purpose of the study, described here, was to assess the cortical shell buckling scenario as a possible mechanism of the femoral head collapse at the various stages of osteonecrosis.

Metallic sandwich plates subject to intense air shocks (by Ashkan Vaziri and John W. Hutchinson)

Submitted by Ashkan Vaziri on

Recent results on fluid-structure interaction for plates subject to high intensity air shocks are employed to assess the performance of all-metal sandwich plates compared to monolithic solid plates of the same material and mass per area. For a planar shock wave striking the plate, the new results enable the structural analysis to be decoupled from an analysis of shock propagation in the air. The study complements prior work on the role of fluid-structure interaction in the design and assessment of sandwich plates subject to water shocks. Square honeycomb and folded plate core topologies are considered. Fluid-structure interaction enhances the performance of sandwich plates relative to solid plates under intense air shocks, but not as significantly as for water blasts. The paper investigates two methods for applying the loading to the sandwich plate-responses are contrasted for loads applied as a time-dependent pressure history versus imposition of an initial velocity. Click here for the full paper.

Solid Mechanics Homework 6-10

Submitted by Zhigang Suo on

6. Post an entry in iMechanica to explain to your teaching staff and classmates why you take this class.

7. Residual stress around an inclusion

8. Lame Solution in Cylindrical Shape

9. Stress Concentration around a Circular Hole

10. Back-of-Envelope Calculation

Return to the outline of the course.

Finite element simulations of microvoid growth due to selective oxidation in binary alloys.

Submitted by Dhirendra Kubair on

Selective oxidation induced void growth is observed in thermal barrier coating (TBC) systems used in gas turbines. These voids occur at the interface between the bond coat and the thermally grown oxide layer. In this article we develop the modeling framework to simulate microvoid growth due to coupled diffusion and creeping in binary alloys. We have implemented the modeling framework into an existing finite element program. The developed modeling framework and program is used to simulate microvoid growth driven by selective oxidation in a binary beta-NiAl alloy. Axisymmetric void growth due to the combined action of interdiffusion and creeping is simulated. The sharpness of the void and direction of creeping are considered as parameters in our study. Our simulations show that the voids dilate without any change in shape when creeping is equally likely in all the directions (isotropic). Void growth patterns similar to those observed in experiments are predicted when the creeping is restricted to occur only along the radial and tangential directions. A hemispherical void grows faster compared to a sharp void. The sharpness increases in the case of a sharp void and could lead to interactions with the neighboring voids leading to spallation of the thermally grown oxide layer as observed in experiments.

Mystical materials in indentation

Submitted by Xi Chen on

As an indenter penetrates an elastoplastic material, the indentation load P can be measured as a continuous function of the indentation displacement δ, to obtain the so-called P-δ curve. A primary goal of the indentation analysis is to relate the material elastoplastic properties (such as the Young's modulus, yield stress, and work-hardening exponent) with the indentation response (i.e. the shape factors of the P-δ curve, including its curvature, unloading stiffness, loading work, unloading work, maximum penetration, residual penetration, maximum load, etc.).

Dynamics of wrinkle growth and coarsening in stressed thin films

Submitted by Sehyuk Im on

Rui Huang and Se Hyuk Im, Physical Review E 74, 026214 (2006).

A stressed thin film on a soft substrate can develop complex wrinkle patterns. The onset of wrinkling and initial growth is well described by a linear perturbation analysis, and the equilibrium wrinkles can be analyzed using an energy approach. In between, the wrinkle pattern undergoes a coarsening process with a peculiar dynamics. By using a proper scaling and two-dimensional numerical simulations, this paper develops a quantitative understanding of the wrinkling dynamics from initial growth through coarsening till equilibrium. It is found that, during the initial growth, a stress-dependent wavelength is selected and the wrinkle amplitude grows exponentially over time. During coarsening, both the wrinkle wavelength and amplitude increases, following a simple scaling law under uniaxial compression. Slightly different dynamics is observed under equi-biaxial stresses, which starts with a faster coarsening rate before asymptotically approaching the same scaling under uniaxial stresses. At equilibrium, a parallel stripe pattern is obtained under uniaxial stresses and a labyrinth pattern under equi-biaxial stresses. Both have the same wavelength, independent of the initial stress. On the other hand, the wrinkle amplitude depends on the initial stress state, which is higher under an equi-biaxial stress than that under a uniaxial stress of the same magnitude.