Temperature
These notes are part of my notes on thermodynamics.
These notes are part of my notes on thermodynamics.
The notes are attached. See related notes on thermodynamics.
Return to the outline of Statistical Mechanics
Update on 14 December 2019. By now I have taught undergraduate thermodynamics three times at Harvard. I have written up my lecture notes as a book, and posted the book online.
Here are sections that I have now:
A student pointed me to a recent article on physicsweb. This article discusses a new (scientific) ranking system developed by a German student (Michael Banks) in Max Planck Institute of Solid State Physics to characterize the "hotness" of the scientific subject. If, after reading the popular physicsweb article linked above, you are interested in more details you may wish to read the attached original article posted by Banks. "Carbon nanotubes" emerges at the top of the list.
The nanotechnology of the future demands controlled fabrication of nanostructures. Much success has been made in the last decade in fabricating nanostructures on surface with desirable size and shape, either in serial using scanned-probe techniques or in parallel using self-assembly/self-organization processes sometimes combined with lithographic patterning techniques. However, controlled fabrication of nanostructures remains in general a formidable challenge. For example, despite the enormous success we have so far enjoyed with carbon nanotubes (CNTs), it is still very difficult (if not impossible) to synthesize CNTs with a degree of control that we would like in terms of their size and chirality. Fabrication of nanostructures in many other forms and with other materials is even less developed. There exists a strong need for the development of nanofabrication techniques with higher degree of control. Here, we demonstrate the general design principles of an emerging nanofabrication approach based on nanomechanical architecture of strained bi-layer thin films, which allows fabrication of a variety of nanostructures, such as nanotubes, nanorings, nanodrills, and nanocoils, with an unprecedented level of control.
I am a first year PhD student in Aeronautics and Astronautics department at MIT. I also have obtained B.S. and M.S. from the same department. I have taken one Solid Mechanics (graduate level) course at MIT, but since it did not cover waves/vibration or nonlinear plate theory, I look forward to these new topics later in the course very much. My most research work has been done at Technology Laboratory for Advanced Materials and Composites at MIT. My M.S. thesis topic was on micro solid oxide fuel cell. The goal was to design and fabricate thin film tri-layer fuel cell structure that is thermomechanically stable at high operation temperature. We started with mechanical testing to acquire properties, and designed membranes with von Karman plate theory. My PhD topic is nano-engineered composites with carbon nanotubes (CNTs). Solid mechanics is very directly related to these structural tasks including stiffness testing. Generally, having better sense of mechanics behind and having many analysis tools will be greatly helpful. So far I have been having much fun coming to Harvard, taking a little break from MIT (I have been there more than enough, although I still love it there). I hope to learn as much as possible from this course.
Hi everyone, I am Roxanne, a G-2 student in applied physics. My major was chemical engineering when I was an undergraduate student in Taiwan. I had no background on mechanics then. When I was a G-1, I took AP 293 (Deformation of Solids). This course gave me some ideas on the plastic flow, elastic properties, and dislocations of materials. Math, like partial differential equation and tensors are pretty challenging to me…always.
Currently, I am working with Frans, and my research focus is on studying the creep phenomena in metals.
My name is Xuanhe Zhao, and I'm a first year student in DEAS. Before joining Harvard, I got my Master Degree in Materials Engineering from University of British Columbia, Canand. I have took one course on Computational Mechanics, and read a couple of books on theory of elasticity.
The major goal for me taking ES 240 is to learn how to understand and solve engineering problems, both familiar and unfamiliar, in a intuitive way. In addition, I will further consolidate my background in solid mechanics.
I am a first year grad student in bioengineering working in Dr. Parker's Disesase Biophysics Group (http://www.deas.harvard.edu/diseasebiophysics/). I attended Washington University in St. Louis for undergrad, where I double majored in biomedical engineering and biology and minored in chemistry. The only courses I have taken related to solid mechanics are Biomechanics and Transport Phenomena, both of which covered basic mechanics. As an undergrad, I worked in a research lab that focused on cardiac electrophysiology. The lab I am in now is interested in how the mechanical and electrical behaviors of cardiac cells are related, so I need to gain a stronger background in mechanics to match my background in electrophysiology. I hope that this class will help me develop an intuition about the mechanical behavior of objects, which I can apply to the mechanics of cellular events.