User login


You are here

Universality in Anisotropic Linear Anelasticity

arash_yavari's picture

In linear elasticity, universal displacements for a given symmetry class are those displacements that can be maintained by only applying boundary tractions (no body forces) and for arbitrary elastic constants in the symmetry class. In a previous work, we showed that  the larger the symmetry group, the larger the space of universal displacements. Here, we generalize these ideas to the case of anelasticity. In linear anelasticity, the total strain is additively decomposed into elastic strain and anelastic strain, often referred to as an eigenstrain. We show that the universality constraints (equilibrium equations and arbitrariness of the elastic constants) completely specify the universal elastic strains for each of the eight anisotropy symmetry classes. The corresponding universal eigenstrains are the set of solutions to a system of second-order linear PDEs that ensure compatibility of the total strains.  We show that for three symmetry classes, namely triclinic, monoclinic, and trigonal, only compatible (impotent) eigenstrains are universal. For the remaining five classes universal eigenstrains (up to the impotent ones) are the set of solutions to a system of linear second-order PDEs with certain arbitrary forcing terms that depend on the symmetry class.

Subscribe to Comments for "Universality in Anisotropic Linear Anelasticity"

Recent comments

More comments


Subscribe to Syndicate