Nonlinear Anisotropic Viscoelasticity
In this paper we revisit the mathematical foundations of nonlinear viscoelasticity.
In this paper we revisit the mathematical foundations of nonlinear viscoelasticity.
In linear elasticity, universal displacements for a given symmetry class are those displacements that can be maintained by only applying boundary tractions (no body forces) and for arbitrary elastic constants in the symmetry class. In a previous work, we showed that the larger the symmetry group, the larger the space of universal displacements. Here, we generalize these ideas to the case of anelasticity. In linear anelasticity, the total strain is additively decomposed into elastic strain and anelastic strain, often referred to as an eigenstrain.
Universal displacements are those displacements that can be maintained, in the absence of body forces, by applying only boundary tractions for any material in a given class of materials. Therefore, equilibrium equations must be satisfied for arbitrary elastic moduli for a given anisotropy class. These conditions can be expressed as a set of partial differential equations for the displacement field that we call universality constraints. The classification of universal displacements in homogeneous linear elasticity has been completed for all the eight anisotropy classes.
We generalize Hashin's nonlinear isotropic hollow cylinder and sphere assemblages to nonlinear anisotropic solids. More specifically, we find the effective hydrostatic constitutive equation of nonlinear transversely isotropic hollow sphere assemblages with radial material preferred directions. We also derive the effective constitutive equations of finite and infinitely-long hollow cylinder assemblages made of incompressible orthotropic solids with axial, radial, and circumferential material preferred directions.