Skip to main content

strain

Producing Stress Analysis from Strain data

Submitted by G Rezk on
Choose a channel featured in the header of iMechanica

I am doing research on the stresses that are produced when a retainer (a thermoplastic sheet) is placed on the teeth. We've designed the project so that we take an initial scan of the sheet and a final "shifted" scan of the sheet. We'd like to compare, find the strain, and calculate the stress neccessary to produce this strain.

I was hoping to use FEA for this...is it possible? I have access to Abaqus and Ansys, and where can i find the commands that allow me to do this.

Void-induced strain localization at interfaces

Submitted by Anonymous (not verified) on

We published this paper in APL on a study of the deformation near interfaces. It provides insight in the strain localization at the interface and its influence on the deformation in bulk metals. 

Abstract An optical full-field strain mapping technique has been used to provide direct evidence for the existence of a highly localized strain at the interface of stacked Nb/Nb bilayers during the compression tests loaded normal to the interface. No such strain localization is found in the bulk Nb away from the interface. The strain localization at the interfaces is due to a high void fraction resulting from the rough surfaces of Nb in contact, which prevents the extension of deformation bands in bulk Nb crossing the interface, while no distinguished feature from the stress-strain curve is detected.

Dynamics of terraces on a silicon surface due to the combined action of strain and electric current

Submitted by Wei Hong on

A (001) surface of silicon consists of terraces of two variants, which have an identical atomic structure, except for a 90° rotation. We formulate a model to evolve the terraces under the combined action of electric current and applied strain. The electric current motivates adatoms to diffuse by a wind force, while the applied strain motivates adatoms to diffuse by changing the concentration of adatoms in equilibrium with each step. To promote one variant of terraces over the other, the wind force acts on the anisotropy in diffusivity, and the applied strain acts on the anisotropy in surface stress. Our model reproduces experimental observations of stationary states, in which the relative width of the two variants becomes independent of time. Our model also predicts a new instability, in which a small change in experimental variables (e.g., the applied strain and the electric current) may cause a large change in the relative width of the two variants.

Persistent step-flow growth of strained films on vicinal substrates

Submitted by Wei Hong on

We propose a model of persistent step flow, emphasizing dominant kinetic processes and strain effects. Within this model, we construct a morphological phase diagram, delineating a regime of step flow from regimes of step bunching and island formation. In particular, we predict the existence of concurrent step bunching and island formation, a new growth mode that competes with step flow for phase space, and show that the deposition flux and temperature must be chosen within a window in order to achieve persistent step flow. The model rationalizes the diverse growth modes observed in pulsed laser deposition of SrRuO3 on SrTiO3

 Physical Review Letters 95, 095501 (2005)