Chiral topographic instability in shrinking spheres
Many biological structures exhibit intriguing morphological patterns adapted to environmental cues, which contribute to their important biological functions and also inspire material designs. Here, we report a chiral wrinkling topography in shrinking core–shell spheres, as observed in excessively dehydrated passion fruit and experimentally demonstrated in silicon core–shells under air extraction. Upon shrinkage deformation, the surface initially buckles into a buckyball pattern (periodic hexagons and pentagons) and then transforms into a chiral mode.