Programmable wrinkling patterns of liquid crystal network bilayers on compliant substrates
Smart soft materials have gained increasing attention in recent years because of their adaptive behaviors to external multi-physics stimuli, enabling diverse applications across multiple fields. Here, we show programmable wrinkling morphological patterns on liquid crystal network (LCN) bilayers bonded to compliant substrates under thermal load, by tuning the orientation of directors between LCN bilayers. We propose a solid-shell formulation that merges enhanced and natural assumed strain approaches to investigate the pattern formation and morphological transition of LCN bilayers.