User login

Navigation

You are here

fractal surfaces

Mike Ciavarella's picture

IS THERE NO PULL-OFF FOR ADHESIVE FRACTAL SURFACES?

Choose a channel featured in the header of iMechanica: 

In this short note we remark that, at least for the theory of Fuller & Tabor for the adhesive contact of rough random surfaces, fractal surfaces have a limiting zero pull-off force, for all fractal dimensions or amplitudes of roughness. This paradoxical result raises some questions. I ask the iMechanica community for opinions, comparisons of experiments, etc.

Surface Roughness and Electrical Contact Resistance

J.R.Barber The contact of rough surfaces Surfaces are rough on the microscopic scale, so contact is restricted to a few `actual contact areas'. If a current flows between two contacting bodies, it has to pass through these areas, causing an electrical contact resistance. The problem can be seen as analogous to a large number of people trying to get out of a hall through a small number of doors.

Classical treatments of the problem are mostly based on the approximation of the surfaces as a set of `asperities' of idealized shape. The real surfaces are represented as a statistical distribution of such asperities with height above some datum surface. However, modern measurement techniques have shown surfaces have multiscale, quasi-fractal characteristics over a wide range of length scales. This makes it difficult to decide on what scale to define the asperities.

Subscribe to RSS - fractal surfaces

Recent comments

More comments

Syndicate

Subscribe to Syndicate