User login

Navigation

You are here

chaos

Jinxiong Zhou's picture

A semi-analytical time-domain model with explicit fluid force expressions for fluidelastic vibration of a tube array in crossflow

It is widely acknowledged that fluidelastic instability (FEI), among other mechanisms, is of the greatest concern in the flow-induced vibration (FIV) of tube bundles in steam generators and heat exchangers. A range of theoretical models have been developed for FEI analysis, and, in addition to the earliest semi-empirical Connors’ model, the unsteady model, the quasi-steady model and the semi-analytical model are believed to be three advanced models predominant in the literature.

Jinxiong Zhou's picture

A semi-analytical time-domain model with explicit fluid force expressions for fluidelastic vibration of a tube array in crossflow

It is widely acknowledged that fluidelastic instability (FEI), among other mechanisms, is of the greatest concern in the flow-induced vibration (FIV) of tube bundles in steam generators and heat exchangers. A range of theoretical models have been developed for FEI analysis, and, in addition to the earliest semi-empirical Connors’ model, the unsteady model, the quasi-steady model and the semi-analytical model are believed to be three advanced models predominant in the literature.

A novel class of highly efficient and accurate time-integrators in nonlinear computational mechanics

A new class of time-integrators is presented for strongly nonlinear dynamical systems. These algorithms are far superior to the currently common time integrators in computational efficiency and accuracy. These three algorithms are based on a local variational iteration method applied over a finite interval of time. By using Chebyshev polynomials as trial functions and Dirac–Delta functions as the test functions over the finite time interval, the three algorithms are developed into three different discrete time-integrators through the collocation method.

saberelarem's picture

Nonlinear dynamics of rotating shaft with a breathing crack - CHINA SCHOLARSHIP COUNCIL PhD for 2017

Because of the increasing need of energy, the plants installed by electricity supply utilities throughout the world are becoming larger and more highly stressed. Thus, the risk of turbogenerator shaft cracking is increasing also. The development and propagation of a crack represents the most common and trivial beginning of integrity losses in engineering structures.

Mike Ciavarella's picture

Mechanics of love and happiness

An interesting application of non linear dynamics, including happiness with a simple 1D damped oscillator!

Subscribe to RSS - chaos

Recent comments

More comments

Syndicate

Subscribe to Syndicate