Skip to main content

Symposium on "Mechanics of Nanofabrication and Nanostructure Growth" at the 2007 IMECE (ASME Meeting)

Submitted by Yanfei Gao on

(Please also refer to node/711 for the introduction of this ASME meeting and some important changes. )

Mechanics has been playing a critical role in understanding the fabrication and reliability of nanostructured material systems, such as the self-assembly of quantum dots during heteroepitaxial thin film growth. Sponsored by the Elasticity Committee of Applied Mechanics Division, this symposium will identify opportunities and challenges in mechanics of materials that are motivated from a variety of novel and emerging nanofabrication and nanostructure growth methods. Presentations in experimental, theoretical, and computational studies are solicited in the following areas (but not limited to):

A subdomain collocation method based on Voronoi domain partition and reproducing kernel approximation

Submitted by Jinxiong Zhou on

A subdomain collocation method based on Voronoi diagrams and reproducing kernel approximation is presented. The unkonwn field variables are approximated via reproducing kernel approximation. The body integration arising from the numerical evaluation of Galerkin weak form is converted into much cheaper contour integration along the boundary of each Voronoi cell. The Voronoi cells also provide an natural structure to perform h-adaptivity.

Interfacial Thermal Stresses in a Bi-Material Assembly with a Low-Yield-Stress Bonding Layer

Submitted by Ephraim Suhir on

An approximate predictive model is developed for the evaluation of the interfacial thermal stresses in a soldered bi-material assembly with a low-yield-stress bonding material. This material is considered linearly elastic at the strain level below the yield point and ideally plastic at the higher strains. The results of the analysis can be used for the assessment of the thermally induced stresses

On the thermomechanical coupling of shape memory alloys and shape memory alloys composites

Submitted by Yuval Freed on

Smart materials have received much attention in recent years, especially due to their various applications in smart structures, medical devices, actuators, space and aeronautics. Among these
materials, shape memory alloys exhibit extremely large, inelastic, recoverable strains (of the order of 10%), resulting from transformation between austenitic and martensitic phases. This
transformation may be induced by a change, either in the applied stress, the temperature, or both.

Texas Instruments will extend outsourcing model. Will more people lose jobs?

Submitted by Zhigang Suo on
Choose a channel featured in the header of iMechanica
Free Tags

News of Texas Instruments are intriguing. The world's largest maker of chips for mobile phones has just posted good fourth-quarter earnings. Despite the gains, the company said it will further increase efficiency and profitability by extending the model of outsourcing. This time it will include development of certain chips. The news on the Internet is rather terse. Will the company drastically reduce its research and development activities? Will many people lose jobs?

Symposium on Nanoscale, Biological, Cellular and Nonlinear Materials at the 2007 IMECE

Submitted by Xin-Lin Gao on

The 2007 International Mechanical Engineering Congress and Exposition
November 11-16, 2007, Seattle, Washington, Sponsored by the Composites and Elasticity Committees, Applied Mechanics Division
Track 18-7 Nanoscale, Biological, Cellular and Nonlinear Materials

Modeling Surface Stress Effects on Nanomaterials

Submitted by Harold S. Park on

We present a surface Cauchy-Born approach to modeling FCC metals with nanometer scale dimensions for which surface stresses contribute significantly to the overall mechanical response. The model is based on an extension of the traditional Cauchy-Born theory in which a surface energy term that is obtained from the underlying crystal structure and governing interatomic potential is used to augment the bulk energy.

2007 VISUALIZATION CHALLENGE NOW ACCEPTING ENTRIES

Submitted by Ken P. Chong on

If you understand the power of visual communication to explain, explore, and extend our knowledge of the world around us, then you are invited to enter the 2007 Science & Engineering Visualization Challenge, co-sponsored by the National Science Foundation (NSF) and Science, published by the American Association for the Advancement of Science (AAAS). Entry deadline: 31 May 2007.