Skip to main content

Delocalizing Strain in a Thin Metal Film on a Polymer Substrate

Submitted by Teng Li on

Teng Li, Zhenyu Huang, Zhichen Xi, Stephanie P. Lacour, Sigurd Wagner, Zhigang Suo, Mechanics of Materials, 37, 261-273 (2005).

Under tension, a freestanding thin metal film usually ruptures at a smaller strain than its bulk counterpart. Often this apparent brittleness does not result from cleavage, but from strain localization, such as necking. By volume conservation, necking causes local elongation. This elongation is much smaller than the film length, and adds little to the overall strain. The film ruptures when the overall strain just exceeds the necking initiation strain, εN , which for a weakly hardening film is not far beyond its elastic limit. Now consider a weakly hardening metal film on a steeply hardening polymer substrate. If the metal film is fully bonded to the polymer substrate, the substrate suppresses large local elongation in the film, so that the metal film may deform uniformly far beyond εN. If the metal film debonds from the substrate, however, the film becomes freestanding and ruptures at a smaller strain than the fully bonded film; the polymer substrate remains intact. We study strain delocalization in the metal film on the polymer substrate by analyzing incipient and large-amplitude nonuniform deformation, as well as debond-assisted necking. The theoretical considerations call for further experiments to clarify the rupture behavior of the metal-on-polymer laminates.

Related posts and discussions

Tension of Cu film on Pi substrate
Local thinning of Cu film
High ductility of a metal film adherent on a polymer substrate


High ductility of a metal film adherent on a polymer substrate

Submitted by Yong Xiang on

In recent development of deformable electronics, it has been noticed that thin metal films often rupture at small tensile strains. Here we report experiments with Cu films deposited on polymeric substrates, and show that the rupture strains of the metal films are sensitive to their adhesion to the substrates. Well-bonded Cu films can sustain strains up to 10% without appreciable cracks, and up to 30% with discontinuous microcracks. By contrast, poorly bonded Cu films form channel cracks at strains about 2%. The cracks form by a mixture of strain localization and intergranular fracture.

Griffith controversy

Submitted by Konstantin Volokh on

Using the Griffith energy method for analysis of cavitation under hydrostatic tension we conclude that the critical tension tends to infinity when the cavity radius approaches zero (IJSS, 2006, doi: 10.1016/j.ijsolstr.2006.12.022). The conclusion is physically meaningless, of course. Moreover, if we assume that the failure process occurs at the edge of the cavity then the critical tension should be length-independent for small but finite cavities while the Griffith analysis always exhibits length-dependence. The main Griffith idea - introduction of the surface energy - is controversial because it sets up the characteristic length, say, surface energy over volume energy. By no means is this approach in peace with the length-independent classical continuum mechanics.

Is rest of the world catching up with us? Perspective from Physical Review Letters...

Submitted by Pradeep Sharma on

I had posted this on the amd blog...I am posting it here as well:

Last year I attended the annual American Physical Society conference held in Baltimore (during the week of March 13th). One of the non-technical sessions included presentations by the APS journal editors--Physical Review A/B/C/D/E and Letters---and a panel discussion related to these journals. Since many of our mechanics and materials colleagues nowadays are interested in publishing in these journals, I thought I should post a link to some of the slides (from the editors presentation) that I found interesting. Many of the slides presented at APS are in the linked pdf file that also includes additional (humorous slides!) regarding reviewer issues.

The Ranking of Mechanics Related Journals (2004)

Submitted by shaofanli on

Based on a survey from Journal Citation Report (JCR), we listed below the 2004 Journal Impact Factors (IF) for some mechanics, material science, and solid state physics related scientific journals. Our list and information may not be complete. We welcome readers' input, comments, and information. We also caution readers that using IF as the sole criterion to rank scientific journals' academic reputation may not be objective nor true to a journal's actual scientific merits.

Nanoscience Initiative Workshop

Submitted by Rui Huang on

The Air Force Office of Scientific Research (AFOSR) of the U.S. Air Force Research Laboratory (AFRL) and National Science Council (NSC) in Taiwan are pleased to announce that the 4th U.S. Air Force/Taiwan Nanoscience and Nanotechnology workshop will be held on February 8-9, 2007 at the main campus of the University of Houston. We invite you to join us at the workshop.

Nonlinear stick-spiral model for predicting mechanical behavior of single-walled carbon nanotubes

Submitted by Tienchong Chang on

(PRB,74,245428,2006)  Based on a molecular mechanics concept, a nonlinear stick-spiral model is developed to investigate the mechanical behavior of single walled carbon nanotubes (SWCNTs). The model is capable of predicting not only the initial elastic properties (e.g., Young’s modulus) but also the stress-strain relations of a SWCNT under axial, radial, and torsion conditions. The elastic properties, ultimate stress, and failure strain under various loading conditions are discussed and special attentions have been paid to the effects of the tube chirality and tube size. Some unique mechanical behaviors of chiral SWCNTs, such as axial strain-induced torsion, circumferential strain-induced torsion, and shear strain-induced extension are also studied. The predicted results from the present model are in good agreement with existing data, but very little computational cost is needed to yield them.