Skip to main content

Electric Field May Promote Exfoliation of Clay Nanoplates

Submitted by Wei Lu on

Nanocomposite performance fundamentally relies on reproducible dispersion and arrangement of nanoparticles, such that the dominate morphology across macroscopic dimensions is also nanoscopic. To facilitate dispersion, chemical approaches, including surfactant or macromolecular stabilization are usually employed to modify the surface of nanoparticles. However, the approach depends on the material system and usually involves trial-and-error to identify the best practice. Much less quantitative information is available on the coupling between the surface modification and external processing factors, including shear, electric or magnetic fields. In a recent work, we considered electric field on the interaction of nano-plates. For ideal dielectrics an electric field may assist (or retard) exfoliation depending on the angle between a collection of plates and the field. A critical electric field strength to promote exfoliation is predicted when the field is parallel to the surface of the plates. Structural refinement is predicted to occur by cleavage through the center of the stack. For lossy dielectrics, frequency can be tuned to cause exfoliation in all plate orientations.

A New Class of Composite Materials - Graphene-based Composite Materials

Submitted by Xiaodong Li on

Professor Rodney Ruoff and colleagues at Northwestern University and Purdue University have developed a process that promises to lead to the creation of a new class of composite materials - graphene-based materials. They reported the results of their research in Nature, 442 (2006) 282-286. This team has overcome the difficulties of yielding a uniform distribution of graphene-based sheets in a polymer matrix. Such composites can be readily processed using standard industrial technologies such as moulding and hot-pressing. The technique should be applicable to a wide variety of polymers. The graphene composites may compete with carbon nanotube-based materials in terms of mechanical properties. This new class of composites may stimulate the applied mechanics community to study the fundamental reinforcing mechanisms of graphene sheets from both experimental and theoretical approaches.

Symposium on the Mechanics of Electromagnetic Materials and Structures, ICNM-V, June 11-14, 2007, Shanghai

Submitted by Ji Wang on

You are cordially invited to participate in the Symposium on the Mechanics of Electromagnetic Materials and Structures, the 5th International Conference on Nonlinear Mechanics (ICNM-V), to be held in Shanghai, China, June 11-14, 2007.  You may find more information at the website of the conference.

The symposium topics include piezoelectricity, ferroelectricity, magnetoelasticity, electromagnetic fluids and various applications in engineering and technology, but are not limited to the above. Experimental, theoretical, and computational studies are all welcome.

Please e-mail your one-page abstract(s) to any of us listed below. We look forward to hearing from you. If you have any questions, please do not hesitate to contact us at

Professor Ji Wang, Ningbo University, wangji [at] nbu.edu.cn (wangji[at]nbu[dot]edu[dot]cn)

Professor Yuantai Hu, Central South University, hudeng [at] 263.net (hudeng[at]263[dot]net)

Professor Jiashi Yang, University of Nebraska, jyang1 [at] unl.edu (jyang1[at]unl[dot]edu)

Professor Daining Fang, Tsinghua University, fangdn [at] tsinghua.edu.cn (fangdn[at]tsinghua[dot]edu[dot]cn)

Submission of abstract: as soon as possible.

Notification of acceptance: Nov. 1, 2006

Submission of final paper(s) for the conference proceedings: Jan. 1, 2007

Interplay between elastic interactions and kinetic processes in stepped Si (001) homoepitaxy

Submitted by Wei Hong on

A vicinal Si (001) surface may form stripes of terraces, separated by monatomic-layer-high steps of two kinds, SA and SB. As adatoms diffuse on the terraces and attach to or detach from the steps, the steps move. In equilibrium, the steps are equally spaced due to elastic interaction. During deposition, however, SA is less mobile than SB. We model the interplay between the elastic and kinetic effects that drives step motion, and show that during homoepitaxy all the steps may move in a steady state, such that alternating terraces have time-independent, but unequal, widths. The ratio between the widths of neighboring terraces is tunable by the deposition flux and substrate temperature. We study the stability of the steady state mode of growth using both linear perturbation analysis and numerical simulations. We elucidate the delicate roles played by the standard Ehrlich-Schwoebel (ES) barriers and inverse ES barriers in influencing growth stability in the complex system containing (SA+SB) step pairs.

Preprint available in the attachment.

Linking Interfacial Plasticity to Ductility: A Modeling Framework for Nanostructured Metals

Submitted by Anonymous (not verified) on

Ting Zhu, Ju Li, Amit Samanta, Hyoung Gyu Kim and Subra Suresh

Nano-twinned copper exhibits an unusual combination of ultrahigh strength and high ductility, along with increased strain-rate sensitivity. We develop a mechanistic framework for predicting the rate sensitivity and elucidating the origin of ductility in terms of the interactions of dislocations with interfaces. Using atomistic reaction pathway calculations, we show that twin boundary (TB) mediated slip transfer reactions are the rate-controlling mechanisms of plastic flow. We attribute the relatively high ductility of nano-twinned copper to the hardenability of TBs as they gradually lose coherency during deformation. These results offer new avenues for tailoring material interfaces for optimized properties.

see the attached pdf file

How does iMechanica relate to Applied Mechanics Blogs?

Submitted by Zhigang Suo on
Free Tags

In January 2006, with the encouragement of the Executive Committee of the ASME Applied Mechanics Division, several volunteers initialed Applied Mechanics News (AMN), a blog of news and views of interest to the international community of Applied Mechanics, accompanied by sister blogs covering research and researchers, conferences, and jobs. Within weeks, AMN topped the list on Google, Yahoo and MSN for the query of applied mechanics news. By late August 2006, the four sister blogs had a total of over 65,000 page loads, and on average over hundred unique visitors every day, from all over the world.

The Internet has enabled AMN to be international and inter-organizational. The news can be updated continuously by many volunteers. Some of the initial thoughts of AMN was collected in the entry Applied Mechanics in the Age of Web 2.0.

Why should you post in iMechanica?

Submitted by Teng Li on
Choose a channel featured in the header of iMechanica
Free Tags

Because you love mechanics and because you want to help others to learn mechanics. Well, these may be part of the reason. Perhaps more importantly, you would like to help yourself by helping others to discover you and your research.

A molecular dynamics-decorated finite element framework for simulating the mechanical behaviors of biomolecules

Submitted by Xi Chen on

Our first paper in biomechanics is featured as the cover of the Biophysical Journal. The paper is attached. Several freelance writers in biophysics have reported this paper in magazines and websites/blogs. This framework is very versatile and powerful, and we are now implementing more details/atomistic features into this phenomenological approach, and the follow-up paper will be submitted soon.

Abstract: The gating pathways of mechanosensitive channels of large conductance (MscL) in two bacteria (Mycobacterium tuberculosis and Escherichia coli) are studied using the finite element method. The phenomenological model treats transmembrane helices as elastic rods and the lipid membrane as an elastic sheet of finite thickness; the model is inspired by the crystal structure of MscL. The interactions between various continuum components are derived from molecular-mechanics energy calculations using the CHARMM all-atom force field. Both bacterial MscLs open fully upon in-plane tension in the membrane and the variation of pore diameter with membrane tension is found to be essentially linear. The estimated gating tension is close to the experimental value. The structural variations along the gating pathway are consistent with previous analyses based on structural models with experimental constraints and biased atomistic molecular-dynamics simulations. Upon membrane bending, neither MscL opens substantially, although there is notable and nonmonotonic variation in the pore radius. This emphasizes that the gating behavior of MscL depends critically on the form of the mechanical perturbation and reinforces the idea that the crucial gating parameter is lateral tension in the membrane rather than the curvature of the

Plan activities of the Applied Mechanics Division at 2007 ASME Congress

Submitted by Zhigang Suo on

The ASME International Mechanical Engineering Congress and Exposition (IMECE) will be held in 11-16 November 2007, in Seattle, Washington. As the 2007 Program Chair of the Applied Mechanics Division (AMD), I hope to get you involved in planning activities at the Congress.

IMECE is a place where you can meet people and attend talks in Applied Mechanics, as well as in other fields, such as Materials, Electronic Packaging, Tribology, and Heat Transfer. For many mechanicians, a highlight of the Congress is the Applied Mechanics Annual Dinner, where old acquaintances are resumed, new friends made, awards announced, and the Timoshenko lectures delivered.