User login

Navigation

You are here

Zhengwei Li's blog

Zhengwei Li's picture

Human-eyeball-inspired curvy, shape-adaptive kirigami imagers

Curvy imagers that can adjust their shape are of use in imaging applications that require low optical aberration and tunable focusing power. Existing curvy imagers are either flexible but not compatible with tunable focal surfaces, or stretchable but with low resolution and pixel fill factors. Here, we show that curvy and shape-adaptive imagers with high pixel fill factors can be created by transferring an array of ultrathin silicon optoelectronic pixels with a kirigami design onto curvy surfaces using conformal additive stamp printing.

Zhengwei Li's picture

Mechanics helps design better living robotics

Engineering living systems is a rapidly emerging discipline where the functional biohybrid robotics (or ‘Bio-bots’) are built by integrating of living cells with engineered scaffolds. Inspired by embryonic heart, we presented earlier the first example of a biohybrid valveless pump-bot, an impedance pump, capable of transporting fluids powered by engineered living muscle tissues. The pump consists of a soft tube attached to rigid boundaries at the ends, and a muscle ring that squeezes the tube cyclically at an off-center location.

Zhengwei Li's picture

New method to fabricate 3D curvy electronics

We report a manufacturing technology, called conformal additive stamp (CAS) printing and show that it can be used to reliably manufacture electronic devices with 3D shapes. Our CAS printing approach employs a pneumatically inflated elastomeric balloon as a conformal stamping medium to pick up pre-fabricated electronic devices and print them onto 3D surfaces to create devices with curvy shapes including electrically small antennas, hemispherical solar cells and smart contact lenses.

Zhengwei Li's picture

A biohybrid valveless pump-bot powered by engineered skeletal muscle

Pumps are critical life-sustaining components for all animals. At the earliest stages of life, the tubular embryonic heart works as a valveless pump capable of generating unidirectional blood flow. Inspired by this elementary pump, we developed the first example of a biohybrid valveless pump-bot powered by engineered skeletal muscle. Our pump-bot consists of a soft hydrogel tube connected at both ends to a stiffer polydimethylsiloxane (PDMS) scaffold, creating an impedance mismatch.

Zhengwei Li's picture

Harnessing Surface Wrinkling-Cracking Patterns for Tunable Optical Transmittance

Optical devices and systems with tunable optical transmittance have recently attracted great interest due to their wide range of applications. However, the reported methods of realizing tunable optical transmittance still suffer from complex fabrication processes, high cost, unstable materials or low tuning range. In this study, we report a simple, cheap, and highly effective approach to achieve large tuning range of optical transmittance through harnessing surface wrinkling-cracking patterns on PDMS films.

Zhengwei Li's picture

Theoretical studies on lattice-oriented growth of single-walled carbon nanotubes on sapphire

In this work, a theoretical study is performed to quantitatively understand the van der Waals interactions between single-walled carbon nanotubes (SWNTs) and sapphire substrates. The energetically preferred alignment directions of SWNTs on A-, R- and M-planes and the random alignment on the C-plane predicted by this study are all in good agreement with experiments. It is also shown that smaller SWNTs have better alignment than larger SWNTs due to their stronger interaction with sapphire substrate.

Subscribe to RSS - Zhengwei Li's blog

Recent comments

More comments

Syndicate

Subscribe to Syndicate