Symposium on Mechanics of Integrated Structures and Materials in Advanced Technology
At the 2007 ASME Applied Mechanics and Materials Conference (McMat 2007)
June 3-7, 2007, Austin, Texas
At the 2007 ASME Applied Mechanics and Materials Conference (McMat 2007)
June 3-7, 2007, Austin, Texas
I plan to explore the Saint-Venant torsion problem applied to prismatic bars with elastic-plastic behavior. Wagner and Gruttmann have developed a finite element method to obtain the elastic/plastic stresses of a bar using a single load step. In particular, I will present the constitutive model that they have developed, and then use ABAQUS to apply Wagner and Gruttmann’s model to various cross-sections. I will try to reproduce their results for some simple cross-sections, as well as exploring some more complicated cross sections.
Dislocations are common in epitaxial systems. For a thin film epitaxially grown on a substrate with coherent interface, it may have spontaneously-formed dislocations when its thickness is larger than certain value, i.e. critical thickness. The presence of dislocations can have an adverse effect on electrical performance of semiconductor materials, providing easy diffusion paths for dopants to lead to short circuits, or recombination centers to reduce carrier density. And, formation of dislocations is one of the most observed mechanisms of relaxation of mismatch strain. However, in optoelectric applications, strain alters the electronic bandgap and band edge alignment, and should be maintained. So, controlling formation of dislocations is very important in the manufacture of microelectronic and optoelectronic devices.
This term paper will review some basic concepts and try to produce some understanding about the control dislocation formation.
Today low-k dielectric materials are integrated into computer chips to improve the operation speed and reduce the cross-talk noise. Due to weak mechanical properties of low-k dielectric materials, cohesive failure is subjected to occur. Channel cracking is one common mode of cohesive failure. In this term paper, several potential issues relevant to channel cracking of low-k dielectric thin films are reviewed.
The mechanical performance of a homogeneous material can be varied by the addition of second-phase particles. In this project, we will model a planar composite under plastic deformation. As shown on the following figure, the composite consists of matrix material and randomly-distributed inclusion particles. The matrix is assumed to be an elastic-plastic material with isotropic or kinematic hardenings, and the inclusion particle pure elastic with a higher Young’s modulus. The stress/strain field throughout the composite will be calculated numerically with finite element method.
This is a model of a single semiflexible polymer chain under sustained tension. The model captures two key features of the cytoskeletal rheology: a) the power-law behavior; and b) the dependence of the power-law on mechanical prestress. The model also reveals the underlying mechanisms.
For films or coatings deposited on substrate at high temperature, residual compressive stresses are often induced in the surface layers because of the mismatch in the thermal expansion coefficients. Under such compressive residual stresses, the surface thin film is susceptible to buckling-driven delamination. Various shapes of buckled region are observed, including long straight-sided blisters, circular and the ‘telephone cord’ blister.
Due to maturity of FEM package, slip-line field theory is not widely used these days. However, we shall keep in mind that slip-line field analysis can provide analytical solutions to a number of very difficult problem which may involve huge deformations or velocity discontinuities, e.g. many metal forming processes. To evaluate these two analytical and numerical methods for plasticity I will try a simple example, compare these two solutions and finally get into a conclusion of my own.
The essence of mechanobiology is, probably, the interrelation between mechanical and biochemical factors. An exciting example of such phenomenon is signaling associated with the interaction between the cell and extracellular matrix (EM). While some purely biochemical pathways initiated in the area of contact of the cell and EM are known, there are interesting ideas how the mechanical forces, stresses and strains can be involved too. This view goes back to works of Donald Ingber's group in the 90s that showed how perturbations of the adhesion area as a whole and of an individual integrin result in deformation of the cell nucleus. Interestingly, a distinguished oncologist at Johns Hopkins, Donald Coffey, published similar experimental results about the same time, and he also demonstrated that the observed cytoskeleton/nucleus interaction is different in tumor cells. There are several separate pieces of the puzzle that have been resolved: mechanical forces are generated at focal adhesions, the cytoskeleton is involved, nucleus deforms, gene expression changes as a result of perturbation of the adhesions, however, the whole picture of the interrelated mechanical and biochemical factors has yet to be understood. We recently published some results on this topic in the Journal of Biomechanical Engineering (Jean et al., 2004 and 2005). I was glad to find an interest in the same problem from some participants of this website (e.g., N. Wang, Z. Suo, Long-distance propagation of forces in a cell, 2005 and P.R. LeDuc and R.M. Bellin, Nanoscale Intracellular Organization and Functional Architecture Mediating Cellular Behavior, 2006). This aspect of mechanotransduction is important for many areas beyond mechanics such as cancer, wound healing, cell adhesion and motility, effect of surface micro- and nanopatterning, etc.
Listed below is a recent publication of mine in Science for your possible interest and critics. This is a review article focusing on the multiscale simulation issues in strucutral composites. I will be more than happy to discuss with those of you who are interested. The following is the abstract.
The difficult challenge of simulating diffuse and complex fracture patterns in tough structural composites is at last beginning to yield to conceptual and computational advances in fracture modeling. Contributing successes include the refinement of cohesive models of fracture and the formulation of hybrid stress-strain and traction-displacement models that combine continuum (spatially averaged) and discrete damage representations in a single calculation. Emerging hierarchical formulations add the potential of tracing the damage mechanisms down through all scales to the atomic. As the models near the fidelity required for their use as virtual experiments, opportunities arise for reducing the number of costly tests needed to certify safety and extending the design space to include material configurations that are too complex to certify by purely empirical methods.