Skip to main content

desalination

Carbon nanotube arrays as multilayer transverse flow carbon nanotube membrane for efficient desalination

Submitted by Jingjie Yeo on

https://doi.org/10.1016/j.memsci.2019.03.062 This work presents the multilayer transverse flow carbon nanotube (CNT) membrane (TFCM), which resembles vertically aligned CNT arrays, as an alternative candidate for efficient desalination. Using molecular dynamics, this work shows that multilayer TFCM can provide permeability and salt rejection on par with its single layer counterpart.

Effects of CNT size on the desalination performance of an outer-wall CNT slit membrane

Submitted by Jingjie Yeo on

https://doi.org/10.1039/C8CP01191E We investigate the effect of varying carbon nanotube (CNT) size on the desalination performance through slit confinements formed by horizontally aligned CNTs stacked on top of one another. By increasing the CNT size, the results obtained from this study indicate a corresponding increase in the water flow rate, accompanied by a slight reduction in salt rejection performance.

Effects of oscillating pressure on desalination performance of transverse flow CNT membrane

Submitted by Jingjie Yeo on

https://doi.org/10.1016/j.desal.2018.03.029 In parallel with recent developments in carbon nanomaterials, there is growing interest in using these nanomaterials for desalination. To date, many studies have affirmed the potential of using such nanomaterials for constant pressure desalination operation. In this work, the performance of such membrane when subjected to oscillatory pressure at sub-nanosecond is investigated in detail.

Free-standing graphene slit membrane for enhanced desalination

Submitted by Jingjie Yeo on

http://dx.doi.org/10.1016/j.carbon.2016.09.043 This study considers two novel ideas to further explore and enhance the graphene membrane for desalination. Firstly, while earlier molecular dynamics (MD) simulations studies have used frozen membranes, free-standing membrane is considered here. Since 2D membranes are usually embedded on porous support in the experimental reverse osmosis (RO) process, the free-standing membrane can more accurately model the behavior expected during operation.