Skip to main content

ductility

"Imperfection" in graphene oxide invites surprising properties in a mechano-chemical way

Submitted by Xiaoding Wei on

In an article published in the August 20 issue of Nature Communications, we report a mechanochemical phenomenon in graphene oxide membranes, covalent epoxide-to-ether functional group transformations that deviate from epoxide ring-opening reactions, discovered through nanomechanical experiments and density functional-based tight binding calculations.

Fatigue of polymer-supported Ag thin films

Submitted by Gi-Dong Sim on

The fatigue behavior of Ag films on polyethyleneterephthalate substrates was studied using electrical resistance measurements.
Scanning electron microscopy images showed two types of failure: typical fatigue failure with extrusion–intrusion pairs, and ductile
failure with local necking. Once through-thickness cracks are formed in the metal layer, cracks propagate and the resistance increases abruptly for both failure modes. The effect of adhesion on fatigue life is discussed in terms of concurrent delamination, crack initiation and propagation.

Effects of grain boundary adhesion and grain size on ductility of thin metal films on polymer substrates

Submitted by Teng Li on

We study the effects of grain boundary adhesion and grain size on the ductility of thin metal films well bonded to polymer substrates, using finite element method. It is shown that the ductility of polymer-supported metal films increases approximately linearly as the grain boundary adhesion increases, and as the grain size decreases. A rule-of-thumb estimate of the ductility of polymer-supported metal films agrees well with the simulation results.

In press, Scripta Materialia, 2008