Skip to main content

research

Computational morphology and morphogenesis for empowering soft-matter engineering

Submitted by Fan Xu on

Morphing soft matter, which is capable of changing its shape and function in response to stimuli, has wide-ranging applications in robotics, medicine and biology. Recently, computational models have accelerated its development. Here, we highlight advances and challenges in developing computational techniques, and explore the potential applications enabled by such models.

Yifan Yang, Fan Xu*

Nature Computational Science, 2024, https://doi.org/10.1038/s43588-024-00647-y

Universal Deformations and Inhomogeneities in Isotropic Cauchy Elasticity

Submitted by arash_yavari on

For a given class of materials, universal deformations are those deformations that can be maintained in the absence of body forces and by applying solely boundary tractions. For inhomogeneous bodies, in addition to the universality constraints that determine the universal deformations, there are extra constraints on the form of the material inhomogeneities—universal inhomogeneity constraints. Those inhomogeneities compatible with the universal inhomogeneity constraints are called universal inhomogeneities.

A review of peridynamic theory and nonlocal operators along with their computer implementations

Submitted by dorduncu on

This study presents a comprehensive exploration of Peridynamic (PD) theory, with a specific focus on its theoretical foundations and practical implementations, including various PD formulations and PD operators. The objective is to highlight the unique attributes of each PD formulation and assess their suitability in the framework of material failure simulations by providing an extensive literature review.

PhD position(s) in modeling of the interaction between phase transformations and plasticity

Submitted by Valery Levitas on

PhD position(s) is available for Fall 2024 or Spring 2025 in the Engineering Mechanics program in the Aerospace Engineering Department at Iowa State University (USA) to perform the theoretical and computational part of work on NSF- and ARO-funded projects on the interaction between phase transformations and plasticity at high pressures. Phase-field, micromechanical, and macroscale simulations using FEM are of interest in close collaboration with high-pressure experiments performed in our lab and at governmental synchrotron radiation facilities. MS degree is required.

 

A semi-analytical time-domain model with explicit fluid force expressions for fluidelastic vibration of a tube array in crossflow

Submitted by Jinxiong Zhou on

It is widely acknowledged that fluidelastic instability (FEI), among other mechanisms, is of the greatest concern in the flow-induced vibration (FIV) of tube bundles in steam generators and heat exchangers. A range of theoretical models have been developed for FEI analysis, and, in addition to the earliest semi-empirical Connors’ model, the unsteady model, the quasi-steady model and the semi-analytical model are believed to be three advanced models predominant in the literature.

A semi-analytical time-domain model with explicit fluid force expressions for fluidelastic vibration of a tube array in crossflow

Submitted by Jinxiong Zhou on

It is widely acknowledged that fluidelastic instability (FEI), among other mechanisms, is of the greatest concern in the flow-induced vibration (FIV) of tube bundles in steam generators and heat exchangers. A range of theoretical models have been developed for FEI analysis, and, in addition to the earliest semi-empirical Connors’ model, the unsteady model, the quasi-steady model and the semi-analytical model are believed to be three advanced models predominant in the literature.

A semi-analytical time-domain model with explicit fluid force expressions for fluidelastic vibration of a tube array in crossflow

Submitted by Jinxiong Zhou on

It is widely acknowledged that fluidelastic instability (FEI), among other mechanisms, is of the greatest concern in the flow-induced vibration (FIV) of tube bundles in steam generators and heat exchangers. A range of theoretical models have been developed for FEI analysis, and, in addition to the earliest semi-empirical Connors’ model, the unsteady model, the quasi-steady model and the semi-analytical model are believed to be three advanced models predominant in the literature.

Postdoctoral Research Opportunity at TAMUG

Submitted by marc53042 on

The Ocean Engineering Structures and Extreme Material Laboratory (OESEM) of the Department of Ocean Engineering at the Texas A&M University, Galveston has an opening for 1-year Postdoc position (which may be extended anually upon contract renewal) to conduct research in the areas of computational fracture modeling and fluid-structure interaction (FSI) of gaseous mixtures starting in July 2024.

A pseudoelastic response of hyperelastic composites reinforced with nonlinear elastic fibrous materials: Continuum modeling and analysis

Submitted by Mahdi Zeidi on

Abstract: The present study aims to develop a continuum-based model to predict the pseudoelastic behavior of biological composites subjected to finite plane elastostatics. The proposed model incorporates a hyperelastic matrix material reinforced with nonlinear fibers, addressing challenges such as irreversible softening responses, large deformations, and nonlinear stress–strain responses.