Skip to main content

research

Multiple scattering theory for polycrystalline materials

Submitted by hehuijing on

This work is a natural extension of the author’s previous work: “Multiple scattering theory for heterogeneous elastic continua with strong property fluctuation: theoretical fundamentals and applications” (arXiv:1706.09137 [physics.geo-ph]), which established the foundation for developing multiple scattering model for heterogeneous elastic continua with either weak or strong fluctuations in mass density and elastic stiffness. Polycrystalline material is another type of heterogeneous materials that widely exists in nature and extensively used in industry.

Multiple scattering theory for heterogeneous elastic continua with strong property fluctuation: theoretical fundamentals and applications

Submitted by hehuijing on

Scattering of elastic waves in heterogeneous media has become one of the most important problems in the field of wave propagation due to its broad applications in seismology, natural resource exploration, ultrasonic nondestructive evaluation and biomedical ultrasound. Nevertheless, it is one of the most challenging problems because of the complicated medium inhomogeneity and the complexity of the elastodynamic equations.

Ph.D. Student Positions in Computational Materials Science and Mechanics

Submitted by AnterEl-Azab on

Several Ph.D. student positions are available in Professor El-Azab’s group with the School of Materials Engineering, Purdue University. The group performs advanced theoretical and computational research in the areas of mesoscale plasticity and dislocation dynamics, radiation effects in materials, microstructure evolution, phase field method development, and computational methods for materials science and mechanics. Applicants with MS in mechanical, aerospace, or materials engineering, with background in microstructure science, continuum mechanics and elasticity, numerical methods or computational techniques such as finite element method are highly preferred. Knowledge of at least one advanced programming language such as Fortran or C++ is required. Exceptional applicants with BS degree will also be considered. The openings are for spring 2018, summer 2018 and fall 2018. Applicants must meet Purdue University and School of Materials Engineering admission criteria. For inquiry please send email to Professor El-Azab (aelazab [at] purdue.edu).