Skip to main content

A Recent Book: Meshfree Particle Methods, by Shaofan Li and Wing-Kam Liu

Submitted by shaofanli on

Meshfree Particle Methods is a comprehensive and systematic exposition of particle methods, meshfree Galerkin and partition of unity methods, molecular dynamics methods, and multiscale methods. It presents theoretical foundation, numerical algorithms, as well as applications. Since it was published in 2004, the first print has been sold out. The publisher is preparing the second print.

Eshelby and his two classics (and some more on the side)

Submitted by Mogadalai Gururajan on

Eshelby and the inclusion/inhomogeneity problems

Any materials scientist interested in mechanical behaviour would be aware of the contributions of J.D. Eshelby. With 56 papers, Eshelby revolutionised our understanding of the theory of materials. The problem that I wish to discuss in this page is the elastic stress and strain fields due to an ellipsoidal inclusion/inhomogeneity - a problem that was solved by Eshelby using an elegant thought experiment.

In two papers published in the Proceedings of Royal Society (A) in 1957 and 1959 (Volume 241, p. 376 and Volume 252, p. 561) Eshelby solved the following problem ("with the help of a simple set of imaginary cutting, straining and welding operations"): In his own words,

S. Germain, "Memoir on the Vibrations of Elastic Plates"

Submitted by MichelleLOyen on

I have not read the above-mentioned paper, as I have never been able to find it. However it is said to be "a brilliantly insightful paper which was to lay the foundations of modern elasticity." However, I believe it is also noteworthy for being one of the major contributions by a female mechanician prior to the modern era. For a great biography of Sophie Germain, including a fantastic quote from a letter from Carl Gauss on discovering that she was female--and not "Monsieur Le Blanc"--visit this site (from which the above quote, on the impact of her paper, came).

There are no female mechanicians listed on http://en.wikipedia.org/wiki/Mechanicians but I believe it could be argued that Germain deserves a mention!

New Book: Computer Simulations of Dislocations, by Vasily V. Bulatov and Wei Cai

Submitted by Cai Wei on

Companion web site http://micro.stanford.edu ISBN:0-19-852614-8, Hard cover, 304 pages, Nov. 2006, US $74.50.

This book presents a broad collection of models and computational methods - from atomistic to continuum - applied to crystal dislocations. Its purpose is to help students and researchers in computational materials sciences to acquire practical knowledge of relevant simulation methods. Because their behavior spans multiple length and time scales, crystal dislocations present a common ground for an in-depth discussion of a variety of computational approaches, including their relative strengths, weaknesses and inter-connections. The details of the covered methods are presented in the form of "numerical recipes" and illustrated by case studies. A suite of simulation codes and data files is made available on the book's website to help the reader "to learn-by-doing" through solving the exercise problems offered in the book. This book is part of an Oxford Series on Materials Modelling.

New Book: Fundamentals of Micromechanics of Solids, by Jianmin Qu and Mohammed Cherkaoui

Submitted by jqu on

Fundamentals of Micromechanics of Solids, Jianmin Qu, Mohammed Cherkaoui
ISBN: 0-471-46451-1, Hardcover, 400 pages, August 2006, US $120.00

PART I: LINEAR MICROMECHANICS AND BASIC CONCEPTS

Chapter 1 INTRODUCTION

  • 1.1 Background and Motivation
  • 1.2 Objectives
  • 1.3 Organization of Book
  • 1.4 Notation Conventions
  • References

Chapter 2 BASIC EQUATIONS OF CONTINUUM MECHANICS

The Eighth International Conference on Fundamentals of Fracture

Submitted by Jie Wang on

The Eighth International Conference on Fundamentals of Fracture (ICFF VIII) is the successor of the previous seven held at NBS, Gaithersburg (USA, 1983), Gatlinburg (USA, 1985), Irsee (Germany, 1989), Urabandai (Japan, 1993), NIST, Gaithersburg (USA, 1997), Cirencester (UK, 2001), and Nancy (France, 2005). You are warmly invited to participate in ICFF VIII which will be held 3-7 January 2008 in Hong Kong University of Science and Technology, Hong Kong, and in Guangzhou, China. As the previous conferences, ICFF VIII provides an international forum for presentation and discussion of the latest scientific and technological development in fundamentals of fracture. The general theme of ICFF VIII is to cover all aspects of fracture at a fundamental level, including contributions from those working in the disciplines of Continuum Mechanics, Physics, Chemistry, Bioscience, Metallurgy, Ceramics, Polymer Science, etc. You are cordially invited to submit an abstract to join in this memorable event.

History of mechanics

Submitted by Robert Woods on

Anyone interested in the history of mechanical technology might find interesting the series that I have published in Mechanical Engineering magazine.

Galileo’s Telescope Lenses

http://www.memagazine.org/oct06/features/clearas/clearas.html

Atmospheric Railway

http://www.memagazine.org/backissues/feb06 /features/tallyho/tallyho.html

Why Do Freezing Rocks Break?

Submitted by Juil Yoon on

As you know, the volumetric expansion by 9% during the water-to-ice transition can generate tremendous pressure in a confined space is a common sense. As a result, one may expect freezing water to also fracture rocks.

However, in a recent article in Science, Bernard Hallet explains the power of the 9% water-to-ice expansion in confined spaces is undeniable, but it may rarely be significant for rocks under natural conditions, because it requires a tight orchestration of unusual conditions. Unless the rocks are essentially saturated with water and frozen from all sides, the expansion can simply be accommodated by the flow of water into empty pores, or out of the rock through its unfrozen side.

I think it may be of interest to mechanics. Read more
I hope to hear opinions from people who know about the breaking mechanics of rocks.

Plastic deformation of freestanding thin films: Experiments and modeling

Submitted by Anonymous (not verified) on

This is a paper we recently published in JMPS on a study of the mechanical properties on thin films comparing experimental results with discrete dislocation simulations. It provides insight in the strengthening that occurs in thin metal films when surface or interface effects become important.

The abstract is below; the full paper can be downloaded from here

Abstract - Experimental measurements and computational results for the evolution of plastic deformation in freestanding thin films are compared. In the experiments, the stress–strain response of two sets of Cu films is determined in the plane-strain bulge test. One set of samples consists of electroplated Cu films, while the other set is sputter-deposited. Unpassivated films, films passivated on one side and films passivated on both sides are considered. The calculations are carried out within a two-dimensional plane strain framework with the dislocations modeled as line singularities in an isotropic elastic solid. The film is modeled by a unit cell consisting of eight grains, each of which has three slip systems. The film is initially free of dislocations which then nucleate from a specified distribution of Frank–Read sources. The grain boundaries and any film-passivation layer interfaces are taken to be impenetrable to dislocations. Both the experiments and the computations show: (i) a flow strength for the passivated films that is greater than for the unpassivated films and (ii) hysteresis and a Bauschinger effect that increases with increasing pre-strain for passivated films, while for unpassivated films hysteresis and a Bauschinger effect are small or absent. Furthermore, the experimental measurements and computational results for the 0.2% offset yield strength stress, and the evolution of hysteresis and of the Bauschinger effect are in good quantitative agreement.