# micromechanics

## Reminder: Call for abstracts International Workshop on Computational Mechanics of Materials in Madrid, Spain on October 1st-3rd

This is a reminder to invite you to submit an abstract for the 24th International Workshop on
Computational Mechanics of Materials (IWCMM 24) in Madrid, Spain on October 1st-3rd.
The abstract submission will close in
less than 3 weeks.

## "Plane Remains Plane" boundary condition in Abaqus

I am working on micromechanics modelling of steels. I need to implement  a "plane remains plane" kind of homogeneous boundary condition on some edges of my RVE of Dual Phase Steel. How can i do it by using *Equation option in Abaqus? I want to understand what all and how the nodes needs to be constrained? I am aware of "Planar Constraint" plugin in Abaqus, but some how it is not working for my RVE, so i want to go via the *EQUATION route. Any help would be greatly appreaciated.

Thanks ,

Danish

## Periodic Boundary Conditions vs Homogenous Boundary Conditions in 2D RVE

Hello all,

I want to simulate loading of 2D RVE of dual phase steels, by giving individual phases properties, to get homogenised mechanical properties like yield strength,  % elongation etc, using micromechanics based approach. Litterature shows people have used two kinds of boundary condition viz. Periodic boundary condition and homogenous boundary condition for this case. My doubt is two folds:

1) What is the theoretical difference between these two kinds of boundary conditions?

## Postdoc and PhD positions in LEM3, Arts et Métiers ParisTech, Metz-Lorraine

The LEM3 laboratory (UMR 7239) of Arts et Métiers ParisTech, Metz-Lorraine announces 2 postdoc positions and 1 PhD position.

Postdoc position 1

## Easily calculate longitudinal compression strength of unidirectional composites

The longitudinal compression strength of unidirectional composites F1c, also called Xc, is very difficul to test for, so often you don't have the value for the particular material (fiber, matrix, volume fraction) that you wish to use. Further, just having data does not tell you what paramaters really influence its value--it is not the compressive strength of the fiber, I can assure you. So, there is a simple formula that you can use to predict its value and also to understand what are the parameters that really affect the compression strength of the composite.

## Problems with numerical integration of discontinuous functions

Choose a channel featured in the header of iMechanica:

Hi everybody,

I am a very beginnerin doing research :-) and my topic is about "micro indentation analysis using continuum dislocation theory". I am applying high-order finite element method for this nonlinear problem.

My plan is first writing a subroutine for the element. However, when I intend to compute the internal force by using Gauss integration, I see a problem with the integrand function of some index of the internal force vector. This integrand is discontinuous function. It is therefore, I cannot get a good approximation with the standard Gauss integration.

## Problems with numerical integration of discontinuous functions

Hi everybody,

I am a beginner in doing research :-) and my topic is about "Micro Indentation Analysis using Continuum Dislocation Theory". I am applying high-order finite element method for this nonlinear problem.

My plan is first writing a subroutine for the element. However, when I intend to compute the internal force  by using Gauss Integration, I see a problem with the integrand function of some components of the internal force vector. This integrand is discontious function. It is therefore, I cannot get a good approximation with the standard Gauss integration.