Skip to main content

Aerospace engineering

X-FEM for Abaqus (XFA) Toolkit for Automated Crack Onset and Growth Simulations

Submitted by SIMULIA on

A software tool for automated crack onset and growth simulations based on the eXtended Finite Element Method (X-FEM) has been developed. For the first time, this tool is able to simulate arbitrary crack growth and composite delamination without remeshing. The automated tool is integrated with Abaqus/Standard and Abaqus/CAE via the customization interfaces. It seamlessly works with the Commercial, Off-The-Shelf (COTS) Abaqus suite.

Superposition of Cohesive Elements to Account for R-Curve Toughening in the Fracture of Composites

Submitted by SIMULIA on

The relationships between a resistance curve (R-curve), the corresponding fracture process zone length, the shape of the traction/displacement softening law, and the propagation of fracture are examined in the context of the through-the-thickness fracture of composite laminates. A procedure that accounts for R-curve toughening mechanisms by superposing bilinear cohesive elements is proposed.

Structural Design, Analysis, and Testing of an Expandable Lunar Habitat

Submitted by SIMULIA on

ILC Dover, under contract by NASA Langley Research Center, and in cooperation with NASA Johnson Space Center is designing and manufacturing an expandable lunar habitat. This cylindrical habitat, or Engineering Development Unit (EDU), is a hybrid system with two hard end caps and a deployable softgoods section in the center. The softgood section packs into the endcaps and the unit roughly doubles in length upon deployment. The EDU is designed to demonstrate packing and deployment of an expandable habitat under expected loading conditions.

Preliminary Design of a Composite Wing-sail

Submitted by SIMULIA on

An Abaqus/Standard FEA based study was carried out to develop a structural format for a wing sail used on a sailing boat, V-39 Albatross. As well as providing a novel structural solu-tion to meet a challenging set of requirements, the study has given the necessary mass properties and stiffness data required to further progress the preliminary design phase of the overall boat. The brief for the boat is to set a new world outright sailing speed record at Portland, UK.

Modelling of an Improvement Device for a Tension Test Machine in Crippling Tests

Submitted by SIMULIA on

An analysis of the crippling test applied to thin profiles is considered in this paper by using a standard tension test machine. Crippling tests are compression tests leading to crush collapse. This kind of tests cannot be properly performed in the standard test machine because of an inefficient transmission of the compression load to the specimen. To accomplish a more accurate test an improvement device is designed and modelled. This proposed device consists of four symmetrically-arranged guides joining the two machine heads.

Modelling and Analysis of Welding Processes in Abaqus using the Virtual Fabrication Technology (VFT) Analysis Software developed

Submitted by SIMULIA on

The ability to accurately model welding processes in order to predict residual stresses and distortions is becoming increasingly important in the engineering industry. Abaqus can be used to model the welding process but this has been found to be considerably time consuming and requires a large number of assumptions to be made. Virtual Fabrication Technology is an analysis software suite that is designed to allow Abaqus to accurately model complex welding procedures. It was developed by the Battelle Memorial Institute in conjunction with Caterpillar Incorporated in the USA.

Micromechanics-Based Structural Analysis (FEAMAC) and Multiscale Visualization within Abaqus/CAE Environment

Submitted by SIMULIA on

A unified framework is presented that enables coupled multiscale analysis of composite structures and associated graphical pre and post processing within the Abaqus/CAE environment. The recently developed, free, Finite Element Analysis - Micromechanics Analysis Code (FEAMAC) software couples NASA's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) with Abaqus/Standard and /Explicit to perform micromechanics based FEA such that the nonlinear composite material response at each integration point is modeled at each increment by MAC/GMC.

IMPROVEMENTS IN FEA OF COMPOSITE OVERWRAPPED PRESSURE VESSELS

Submitted by SIMULIA on

Finite element analysis (FEA) of a composite overwrapped pressure vessel (COPV) has traditionally been a tedious and time consuming task. FEA is often omitted in the development of many vessels in favor of a “build and burst” philosophy based only on preliminary design with netting analysis. This is particularly true for small vessels or vessels that are not weight critical. The primary difficulty in FEA of a COPV is the creation of the model geometry on the sub-ply level.

Guidelines and Parameter Selection for the Simulation of Progressive Delamination

Submitted by SIMULIA on

Turon’s methodology for determining optimal analysis parameters for the simulation of progressive delamination is reviewed. Recommended procedures for determining analysis parameters for efficient delamination growth predictions using the Abaqus/Standard cohesive element and relatively coarse meshes are provided for single and mixed-mode loading.

Full cycle stochastic analysis of composite structures under buckling loads

Submitted by SIMULIA on

Structures in general are subject to uncertainty due to manufacturing, assembly, environment of work, loads, etc … This scatter more specifically is associated for example to tolerances of thickness, position, waviness, etc, material mechanical properties distribution, layup alignment axes. All these deviations can be taken into account with stochastic analysis to reduce the total cost of the project considering all the phases of product life (manufacturing, assembly, maintainability…) and make a global robust design.