Skip to main content

Blog posts

Nonlinear Micro Finite Element Analysis of Human Trabecular Bone

Submitted by SIMULIA on

Trabecular bone must withstand the loads that arise during daily activities as well as those due to trauma. Investigation of the mechanical properties of trabecular bone presents a challenge due to its high porosity and complex architecture, both of which vary substantially between anatomic sites and across individuals. While Micro Finite Element (μFE) analysis of trabecular bone is the most commonly used method to analyze trabecular bone mechanical behavior, the large size of these models has forced researchers to use custom codes and linear analysis.

Welding Simulation with Abaqus

Submitted by SIMULIA on

Metal welding processes are employed in various indus-tries. Gas welding techniques use the heat from a flame to melt the parts to be joined and a filler material simulta-neously. Extreme thermal loading is applied to the parts being joined, and complex material responses are initi-ated. The steep, localized thermal gradients result in stress concentrations in the welding zone. Consequently, modeling and simulation of welding processes are often complex and challenging.

Filament Wound Composite Pressure Vessel Analysis with Abaqus

Submitted by SIMULIA on

Filament winding has become a popular construction technique in a wide variety of industries for creating com-posite structures with high stiffness-to-weight ratios. The difficulty in accurately analyzing the structural behavior of a filament wound body derives from the continually vary-ing orientation of the filaments. The standard capabilities of commercial finite element codes are inadequate to model the spatial variation of fiber orientation in a practical way.

Fracture Mechanics Study of a Compact Tension Specimen Using Abaqus/CAE

Submitted by SIMULIA on

Abaqus/CAE includes modeling and postprocessing capabilities for fracture mechanics analyses. These features provide interactive access to the contour integral fracture mechanics technology in Abaqus/Standard. Several fracture-specific tools are available, such as those for creating seam cracks, defining singularities, selecting the crack front and crack tip, defining q-vectors or normals to the crack front, and creating focused meshes. With these tools models can be created to estimate J-integrals, stress intensity factors, and crack propagation directions.

Low-cycle Thermal Fatigue of a Surface-mount Electronics Assembly

Submitted by SIMULIA on

The solder joints of surface-mount electronic devices may fail because of low-cycle fatigue. Combined with differences in thermal expansion properties for the various components of the assembly, cyclic thermal loading induces stress reversals and the potential accumulation of inelastic strain in the joints. Predicting solder joint fatigue life requires a thorough understanding of the deformation and failure mechanisms of the solder alloy and an accurate

Creep Analysis of Lead-Free Solders Undergoing Thermal Loading

Submitted by SIMULIA on

Lead and its compounds have been widely used for many years in the electronics industry. However, the global demand to reduce the use of hazardous materials has compelled electronics manufacturers to consider the use of lead-free materials in future products. This transition has heightened the necessity for new finite element material models that can be used to evaluate the reliability of lead-free solders.

Electro-Mechanical Analysis of MEMS Devices with CoventorWare and Abaqus

Submitted by SIMULIA on

The computational analysis of MEMS (Micro Electro Me-chanical systems) devices poses distinctive challenges, requiring software that provides flexible modeling tools, enables the coupling of multiple physical phenomena, and considers the integration of the devices into their macro-scale surroundings. To meet these requirements, Abaqus partners with developers of commercially available MEMS software by providing the necessary finite element analy-sis capabilities to these packages.

Drop Test Simulation of a Cordless Mouse

Submitted by SIMULIA on

Portable, hand-held electronic devices have become commonplace due to their small size and light weight. It is inevitable that such devices will occasionally experience the shock loading associated with being dropped. Ac-counting for this loading scenario in the design process, both analytically and experimentally, allows for the devel-opment of more durable products. The ability to simulate drop-type loading reliably reduces the dependency on experimental testing.

Modeling the Interaction of Subsea Pipelines with the Seabed

Submitted by SIMULIA on

The interaction of a subsea pipeline with the seabed is a complex phenomenon. Operational  loads can cause a subsea pipeline to buckle or “walk” over the seabed, leading to very high pipeline stresses. In some cases however, the buckling phenomena can be beneficially used to

relieve excessive stresses by allowing the pipeline to deform at pre-determined locations. The understanding and prediction of these phenomena is therefore crucial for subsea pipeline design.

Helical Buckling of Coiled Tubing in Directional Oil Wellbores

Submitted by SIMULIA on

Coiled tubing is used in a variety of oil well operations including drilling, completions, and  remedial activities. For each of these applications coiled tubing offers the benefits of reduced costs, speed, and reduced environmental impact. Coiled tubing possesses a limitation  however, in that it may buckle in service. In this situation the tubing may be damaged, and operations may be delayed or disrupted. In this Technology Brief, we provide a methodology for evaluating the buckling behavior of coiled wellbore tube.