Skip to main content

hydrogel

Multiscale Modeling of Silk and Silk‐Based Biomaterials—A Review

Submitted by Jingjie Yeo on

https://doi.org/10.1002/mabi.201800253 In celebration of Stern Family Professor of Engineering David L. Kaplan, on the occasion of his 65th birthday, we review a selection of relevant contributions of computational modeling to understand the properties of natural silk, and to the design of silk-based materials, especially combined with experimental methods.

Fatigue Fracture of Self-Recovery Hydrogels

Submitted by Ruobing Bai on

Dear Colleagues,

Here is our recent paper “Fatigue Fracture of Self-Recovery Hydrogels”. To the hydrogel community, this paper distinguishes the fatigue fracture and the self-recovery of a hydrogel. To the mechanics community, we show that, for the first time in hydrogels, the fatigue threshold depends only on the covalent network, but not on the noncovalent interactions that provide dissipation.

https://pubs.acs.org/doi/abs/10.1021/acsmacrolett.8b00045?journalCode=a…

Predicting origami-inspired programmable self-folding of hydrogel trilayers

Submitted by Jinxiong Zhou on

Imitating origami principles in active or programmable materials opens the door for development
of origami-inspired self-folding structures for not only aesthetic but also functional purposes. A
variety of programmable materials enabled self-folding structures have been demonstrated across
various fields and scales. These folding structures have finite thickness and the mechanical
properties of the active materials dictate the folding process. Yet formalizing the use of origami
rules for use in computer modeling has been challenging, owing to the zero-thickness theory and

Hydraulic Fracture and Toughening of a Brittle Layer Bonded to a Hydrogel

Submitted by Alessandro Luc… on

Abstract: Brittle materials propagate opening cracks under tension. When stress increases beyond a critical magnitude, then quasistatic crack propagation becomes unstable. In the presence of several precracks, a brittle material always propagates only the weakest crack, leading to catastrophic failure. Here, we show that all these features of brittle fracture are fundamentally modified when the material susceptible to cracking is bonded to a hydrogel, a common situation in biological tissues.

3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures

Submitted by linst06 on

Sungmin Hong, Dalton Sycks, Hon Fai Chan, Shaoting Lin, Gabriel P. Lopez, Farshid Guilak, Kam W. Leong, Xuanhe Zhao, Advanced Materials, 27, 4035-4040, 2015.