User login


You are here

electronic structure

Vikram Gavini's picture

Higher-order adaptive finite-element methods for Kohn-Sham density functional theory

Dear Colleagues,

I wish to share with you our recent article on "Higher-order adaptive finite-element method for Kohn-Sham density functional theory", which will soon appear in the Journal of Computational Physics. Below is the abstract and attached is a preprint of the article.

P. Motamarri, N.R. Nowak, K. Leiter, J. Knap, V. Gavini, Higher-order adaptive finite-element methods for Kohn-Sham density functional theory, J. Comp. Phys. 253, 308-343 (2013).

N. Sukumar's picture

Minisymposium on Electronic-Structure Methods at USNCCM12

Dear Colleagues:

We would like to invite you to submit a contribution to a minisymposium that we are organizing on Emerging Methods for Large-Scale Quantum-Mechanical Materials Calculations at the 12th US National Congress on Computational Mechanics, to be held July 22-25, 2013 in Raleigh, NC. This minisymposium aims to bring together leading researchers in this emerging area to discuss and exchange ideas on new methods developments for density-functional calculations, mathematical analysis, and applications of ab initio methods in electronic-structure calculations.

Dibakar Datta's picture

Postdoctoral Research Associate at Shenoy Research Group at University of Pennsylvania

 A postdoctoral position with primary focus on first principles modeling is available immediately at Shenoy Research Group at UPenn. We are looking for a strongly motivated candidate to work on modeling the performance characteristics
of nanomaterials for energy storage. The ideal candidate will have a background
in materials science/computational physics/quantum chemistry with expertise in density functional theory

N. Sukumar's picture

Journal Club Theme of February 2009: Finite Element Methods in Quantum Mechanics

Choose a channel featured in the header of iMechanica: 

Welcome to the February 2009 issue. In this issue, we will discuss the use of finite elements (FEs) in quantum mechanics, with specific focus on the quantum-mechanical problem that arises in crystalline solids. We will consider the electronic structure theory based on the Kohn-Sham equations of density functional theory (KS-DFT): in real-space, Schrödinger and Poisson equations are solved in a parallelepiped unit cell with Bloch-periodic and periodic boundary conditions, respectively.

N. Sukumar's picture

Postdoctoral Position at UC Davis in Computational Materials Science

Update: The position has been filled; thanks to all who responded.

A post-doctoral position is immediately available at UC Davis. The individual will work on a joint project led by myself and John Pask at LLNL on the development and application of a new finite-element based approach for large-scale quantum mechanical materials calculations.

Subscribe to RSS - electronic structure

Recent comments

More comments


Subscribe to Syndicate