Skip to main content

rolled-up

Cardboard rolls on the nanoscale

Submitted by Peter Cendula on

Everybody knows that cardboard paper can be a highly
anisotropic material. You can easily bend or roll it in one direction
and it is stiff in the other. If you take a close look you will find
that the paper is periodically buckled along one direction. We have now
exploited this phenomenon on the nanoscale to define the roll-up
direction of ultra-thin membranes on a substrate surface.

Bending and wrinkling as competing relaxation pathways for strained free-hanging films

Submitted by Peter Cendula on

A thin film subject to compressive strain can either bend (for large strain gradient) or wrinkle (for small strain gradient). The bending is traditionally used in thermostats (bimetal stripes), but couple of years ago, it was extended to the nanoscale thin films which can bend and roll-up to tubes with defined number of rotations. The wrinkles are also rather common in macro- and microscale thin films.
Here, we developed an equilibrium phase diagram for the shape of
compressively strained free-hanging films by total strain energy
minimization.