Surface Growth in Deformable Solids using an Eulerian Formulation
Dear colleagues,
Dear colleagues,
Dear colleagues,
We invite you to see the preprint of our new paper "Flexoelectricity in soft elastomers and the molecular mechanisms underpinning the design and emergence of giant flexoelectricity" that will appear in PNAS. Here we present a molecular-to-continuum scale theory for the flexoelectric effect in elastomers. The theory unveils a mechanism for achieving giant flexoelectricity--which finds support in prior experimental results; it is then leveraged for designing elastomers for 1) piezoelectricity, 2) tuning the direction of flexoelectricity, and 3) flexoelectricity which is invariant with respect to spurious deformations (https://doi.org/10.1073/pnas.2102477118).
In classical plasticity models, the physical length scale is not considered to control the size effects. Strain gradient plasticity models include one or more length scales that control size effects. Stress gradient plasticity model is introduced with a specific physical length scale and does not include any additional parameters.
The recent literature of finite eignestrains in nonlinear elastic solids is reviewed, and Eshelby's inclusion problem at finite strains is revisited. The subtleties of the analysis of combinations of finite eigenstrains for the example of combined finite radial, azimuthal, axial, and twist eigenstrains in a finite circular cylindrical bar are discussed. The stress field of a spherical inclusion with uniform pure dilatational eigenstrain in a radially-inhomogeneous spherical ball made of arbitrary incompressible isotropic solids is analyzed.
Transverse wrinkles usually emerge in a uniaxially stretched elastic film and can be suppressed upon further tension, which is an instability-restabilization behavior due to the nonlinear competition between stretching energy and bending energy. Here, we show that curvature can effectively and precisely tune the wrinkling localization and amplitude.
We are currently investigating the shock response of materials using molecular dynamics (MD). This project showed us that the preparation of properly equilibrated MD models can be very challenging even for someone with a strong background in molecular modeling. Therefore, we thought of sharing some of our recent MD models with the research community. We would like to share the LAMMPS input and data files required to run MD simulation of shock wave propagation and ballistic impacts. The two MD models are shown above.
The UV cross-linking technique applied to the cornea is a popular and effective therapy for eye diseases such as keratoconus and ectatic disorders. The treatment strengthens the cornea by forming new cross-links via photochemical reactions and, in turn, prevents the disease from further developing.
Our article on MD simulations of shock propagation and spallation in polymers has been published in the Journal of Applied Mechanics.