Skip to main content

Blog posts

5 PhD positions in solid mechanics

Submitted by tvpc22 on

There are 5 vacant PhD positions with good stipend in the field of solid mechanics, constitutive modelling and numerical simulations. We are looking for very competent, creative students all over the world. It is a rare opportunity for a young scientist to develop his versatile skills and this is your chance. As some people know, SIMLab (Structural Impact Laboratory) is internationally reputed group working on problems related to Crashworthiness and Structural Impact. Our group recently got a Centre for Research based Innovation (CRI). All these positions are filling under CRI. Please find the details in the links here:

Call for proposals on advanced high strength steel

Submitted by Ken P. Chong on

The Division of Civil, Mechanical and Manufacturing Innovation (CMMI) of NSF and the DOE Office of Freedom CAR and Vehicle Technologies intend to co-sponsor proposals addressing fundamental research issues in advanced high strength steels (AHSS). Specifically, proposals focused on

  1. AHSS materials development and characterization,
  2. predictive modeling that integrates AHSS material structure and product performance, and
  3. fundamental research in the area of processing and manufacturing of AHSS, are of interest. This collaborative effort is a direct outcome of the Advanced High Strength Steel Workshop.

Interested PIs should consider submitting an unsolicited proposal to the core programs of the CMMI Division namely, (1) Materials Processing & Manufacturing (MPM), (2) Materials Design & Surface Engineering (MDSE), (3) Applications & Structural Mechanics, or (4) Mechanics & Structures of Materials (MSM), during the January 15, 2007 to February 15, 2007 submission window. Unsolicited proposals in response to this letter should have titles beginning with "AHSS:".  Proposals from the March-April 2007 panel review will be eligible for co-funding, pending availability of funds.

Magnetic Twisting Cytometry and Cell Mechanical Propertries

Submitted by Alexander A. Spector on

Some time ago (12-19-06), Daniel Isabey posted an interesting comment on mechanical responses of cells obtained via magnetic twisting cytometry. While the comment was about the nonlinearity of the bead angular displacement, a broader question is how adequately the bead moment/angle relationship represents the complex cell mechanics. There are different patterns of actin bundles at the whole-cell level.

Call for papers: Micro/Meso Mechanical Manufacturing (M4 Process)

Submitted by Roddy MacLeod on

Call for papers: Micro/Meso Mechanical Manufacturing (M4 Process)

http://www.inderscience.com/browse/callpaper.php?callID=568

Call for papers: Micro/Meso Mechanical Manufacturing (M4 Process)

A special issue of the International Journal of Abrasive Technology (IJAT)

Call for papers: Computer Applications in Research and Development of Complex Mechanical Systems

Submitted by Roddy MacLeod on

http://www.inderscience.com/browse/callpaper.php?callID=579

Call for papers: Computer Applications in Research and Development of Complex Mechanical Systems

A special issue of the International Journal of Computer Applications in Technology  (IJCAT)

Nonlinear Electroelastic Deformations

Submitted by Luis Dorfmann on

Electro-sensitive (ES) elastomers form a class of smart materials whose mechanical properties can be changed rapidly by the application of an electric field. These materials have attracted considerable interest recently because of their potential for providing relatively cheap and light replacements for mechanical devices, such as actuators, and also for the development of artificial muscles. In this paper we are concerned with a theoretical framework for the analysis of boundary-value problems that underpin the applications of the associated electromechanical interactions. We confine attention to the static situation and first summarize the governing equations for a solid material capable of large electroelastic deformations. The general constitutive laws for the Cauchy stress tensor and the electric field vectors for an isotropic electroelastic material are developed in a compact form following recent work by the authors. The equations are then applied, in the case of an incompressible material, to the solution of a number of representative boundary-value problems. Specifically, we consider the influence of a radial electric field on the azimuthal shear response of a thick-walled circular cylindrical tube, the extension and inflation characteristics of the same tube under either a radial or an axial electric field (or both fields combined), and the effect of a radial field on the deformation of an internally pressurized spherical shell.

Damage Accumulation and Fracture Initiation in Uncracked Ductile Solids

Submitted by Liang Xue on

doi:10.1016/j.ijsolstr.2006.12.026

Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading

Liang Xue, International Journal of Solids and Structures, Volume 44, Issue 16, 1 August 2007, Pages 5163-5181