# blogs

## Interesting Conference: "micro-TAS 2006"

The conference "micro-TAS" may be interesting to researchers in engineering and science, especially involving Bio-MEMS/NEMS, biophysics, and biochemistry. See details of this conference.

## A Fresh Look at a Beautiful Subject

This is a review on Thermal Physics by Charles Kittle and Herbert Kroemer. I posted the review on Amazon on 2 December 2001.

This is by far THE BEST textbook on the subject. As many people say, thermodynamics is a subject that one has to learn at least three times. I can easily understand the very negative review from the undergraduate student at Berkely. The subject itself is hard, and simply is not for everyone, not for the first run at least. I say this from experience. I earned a Ph.D. degree over ten years ago, and took courses on thermodynamics at both undergraduate and graduate levels. I didn't understand the subject at all, and didn't find much use in my thesis work. However, something about the subject has kept me going back to it ever since. I now own about 40 books on the subject, and use the ideas almost daily in my research.

## the FFT based algorithm to solve the continuum electrostatic field

In the paper[1], the continuum electrostatic simulation in the ion transport through membrane-spanning nanopores is realized by the implicit-solvent method. To solve the problem, the governing equation (Poisson equation for systems with heterogeneous permittivity) is expressed and the electric field is calculated in its reciprocal space by applying 3D-FFT[2]. The system is considered periodic, and a modified vacuum field outside is defined. The rectangular unit cell is discredited into grid points. By iteratively revise this modified vacuum field, the residual of the electric field at the grid points reach its minimum in the real space. After getting the predefined threshold, the iteration is terminated and the reaction potential is calculated. The potential at any point in the domain is interpolate by its eight surrounding grid points. The accuracy and convergence properties of this proposed algorithm are very well, with an overall speed comparable to a typical finite-difference solver.

## Elements of linear elasticity

Update on 26 September 2008: An updated file on elements of linear elasticity is posted. You can still access the older version by clicking "revisions".

Return to the outline of the course.

## Engineering Sciences 240: Solid Mechanics

Fall 2013, MWF 10-11 am, Maxwell-Dworkin Laboratory 319

## Nanotube 'forest' makes super slippery surface

A material less sticky than Teflon has been created by covering a surface with a "forest" of carbon nanotubes. Newscients.com has a very interesting report. Read more...

## 19th Annual Melosh Competition at ETH Zurich

The 19th Annual Melosh Competition for the Best Student Paper on Finite Element Analysis will be held at ETH Zurich, on April 27, 2007.    The competition has become one of the premier graduate student events in the broad area of mechanics.   We have held the competition at a variety of locations over the past several years, but this is the first time it will be held outside the US.  We are presently seeking funds to provide travel fellowships for those students selected as finalists, as this represents an excellent opportunity for students to visit a world-class institution.

Details on the competition and submission procedure can be found here.   The extended abstracts are due on January 8, 2007. I want to emphasize that the competition is really one on computational science.   As a result, papers on meshfree methods, molecular dynamics methods, their coupling with the FEM, etc., are welcome.   Please encourage your colleagues working in computational science to consider applying.

## Egon Orowan

August 2, 1901 - August 3, 1989

## Question about dislocation nucleation sites in strained silicon-on-insulator

Electronic active device is built on the strained silicon-on-insulator (sSOI), e.g. strained Si layer on oxide, which in turn is bonded on bulk silicon wafer. Because no misfit dislocation can exist in strained silicon layer any more, will the dislocation be generated during later processing and operation? If there are still lots of dislocations in the strained silicon layer, where do they come from? Is there any experimental work to discover the dislocation nucleation sites? I guess they will nucleate from the triple junctions of gate-sSOI-cap, because the stress is singular in the triple junction. But I am not sure. So I want to know something about the experimental observations.

## My research work

I use this blog entry to upload my research work, then I have links for my publications in my resume. Otherwise, I don't have any links for my preprints.

If people can upload any files without writing a blog entry, that will be great.

## Saturated voids in interconnect lines due to thermal strains and electromigration

Zhen Zhang, Zhigang Suo, Jun He

Thermal strains and electromigration can cause voids to grow in conductor lines on semiconductor chips. This long-standing failure mode is exacerbated by the recent introduction of low-permittivity dielectrics. We describe a method to calculate the volume of a saturated void (VSV), attained in a steady state when each point in a conductor line is in a state of hydrostatic pressure, and the gradient of the pressure along the conductor line balances the electron wind. We show that the VSV will either increase or decrease when the coefficient of thermal expansion of the dielectric increases, and will increase when the elastic modulus of the dielectric decreases. The VSV will also increase when porous dielectrics and ultrathin liners are used. At operation conditions, both thermal strains and electromigration make significant contributions to the VSV. We discuss these results in the context of interconnect design.

This has been published and the related references are listed here:

• Z. Zhang, Z. Suo, and J. He, J. Appl. Physics, 98, 074501 (2005). link
• J. He, Z. Suo, T.N. Marieb, and J.A. Maiz, Appl. Phys. Lett. 85, 4639 (2004). link

## George Rankine Irwin (26 February 1907 - 9 October 1998)

Dr George Rankine Irwin (26 February 1907 - 9 October 1998) was an American scientist in the field of fracture mechanics and strength of materials. He was internationally known for his study of fracture of materials. Read more...

## Brain Storm and Carbon Nanotubes

Last year, I attended the course ES139/239 in Division of Engineering and Applied Sciences, Harvard University, the innovation in science and technology. The final project of my group was about carbon nanotube (CNT). In the stage of popping up ideas, we did not consider any feasibility issues, and just used our imagination to create fancy ideas. I was inspired by other guys a lot, felt too excited after the evening brainstorm session, and wrote down the ideas I coined up. Some of them are not nonsense, e.g. replacing Cu by CNT as conductor in integrated circuit (IC). Later on, I find a piece of news in nanotoday (Dec. 2005) that the company Arrowhead Research was to provide \$680,000 over two years to Duke University to develop technology for IC based on CNTs. Of course, I am not the first one to come up with this idea. But this means the random imaginative idea is very helpful and sometimes feasible. Another point I learned from this course is to write down at least one idea per day. Keep doing this, then you have a large pool of ideas. One year later, you have 365 ideas. Don’t expect every idea to be useful. Even if just one or two of them are great, it is worthy doing. Imagine that if the future technology originated from one of your ideas, you will contribute the society and feel fullness of ecstasy. If you can realize your idea, you can be a millionaire or billionaire, and then lie on the beach of Caribbean to enjoy the sunshine.

## The long tail of papers

(Initially posted in Applied Mechanics News on 25 July 2006)

In an entry on pay per paper, I alluded to Chris Anderson's new book, The Long Tail. It should be straightforward to collect page views or down loads or citations of individual papers in a journal. You can plot the numbers of hits of individual papers against the rankings of the papers. Here is the curve for articles in Slate. (Not sure why data stopped at top 500 hits. Why not go further to see a really long tail?) Hope someone in Applied Mechanics will show the same data for JMPS, IJSS, MOM, etc. It will be fun.

Here is the gist of Anderson's observation: If you care about the total sale, as a publisher might, then what matters is the area under the curve; the contribution of the tail may rival that of the head. This much is objective, and should not be controversial.

Now allow me to play a variation of the theme, which is admittedly subjective and possibly controversial. Let's say the net contribution of a journal to new knowledge is proportional to the area under the curve (the subjective part). Then numerous less cited papers may make a significant contribution comparable to the contribution made by the best cited papers.

If you are interested in this argument, you might as well generalize the analysis from a single journal to all journals in a field, or to all journals in science, engineering and medicine. I'm not sure if such a curve has ever been plotted, but the job should not be too hard.

Now, if you are an individual author, surely you'd like to have a lot of hits for your own papers, just as Anderson is celebrating his book becoming a best seller. However, if your job is to increase the total knowledge, as the NSF is set up to do, then you might as well pay as much attention to the long tail as to the tall head.

## Carbon nanotubes

Carbon nanotube has been widely investigated and perceived as having great potential in nanomechanical and nanoelectronic devices due to uniqe combination of mechanical, electrical and chemical properties. The carbon nanotubes may be applied (a) as light-weight structural materials with extraordinary mechanical properties such as stiffness and strength; (b) in nano-electronic components as the next-generation of semi-conductors and nanowires; (c) as probes in scanning probe microscopy and atomic force microscopy with the added advantage of a chemically-functionalized tip; (d) as high-sensitivity microbalances; (e) as gas and molecule sensors; (f) in hydrogen storage devices thanks to its high surface-volume ratio; (g) as field-emission type displays; (h) as electrodes in organic light-emitting diodes and (i) as tiny tweezers for nanoscale manipulation, to name a few.

As a postdoc in Xi Chen's group, my current research in the mechanics of carbon nanotubes concentrates in the following areas: a) thermal vibration and application as strain/mass/specie sensors; b) buckling of nanotubes caused by compression, bending, torsion, and indentation; c) mechanical properties of carbon nanotubes in axial and radial directions, and effective continuum modeling; d) fluid conduction in nanotubes. I have published 14 journal papers since 2005 in these areas. I will introduce more details in my blog later.